RNA virus vectors are attractive vaccine delivery agents capable of directing high-level gene expression without integration into host cell DNA. However, delivery of non-encapsidated RNA viral vectors into animal cells is relatively inefficient. By introducing the tobacco mosaic virus (TMV) origin of assembly into the RNA genome of Semliki Forest virus (SFV), we generated an SFV expression vector that could be efficiently packaged (trans-encapsidated) in vitro by purified TMV coat protein (CP). Using cellular assays, pseudovirus disassembly, RNA replication and reporter gene expression were demonstrated. We also evaluated the immune response to trans-encapsidated recombinant SFV carrying a model antigen gene (beta-galactosidase) in C57/B6 mice. Relative to RNA alone, vector encapsidation significantly improved the humoral and cellular immune responses. Furthermore, reassembly with recombinant TMV CPs permitted the display of peptide epitopes on the capsid surface as either genetic fusions or through chemical conjugation, to complement the immunoreactivity of the encapsidated RNA genetic payload. The SFV vector/TMV CP system described provides an alternative nucleic acid delivery mechanism that is safe, easy to manufacture in vitro and that also facilitates the generation of unique nucleic acid/protein antigen compositions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2006.08.040DOI Listing

Publication Analysis

Top Keywords

trans-encapsidated recombinant
8
viral vectors
8
tobacco mosaic
8
mosaic virus
8
semliki forest
8
forest virus
8
gene expression
8
rna
6
virus
5
assembly trans-encapsidated
4

Similar Publications

A neo-virus lifestyle exhibited by a (+)ssRNA virus hosted in an unrelated dsRNA virus: Taxonomic and evolutionary considerations.

Virus Res

January 2018

Institute of Plant Science and Resources (IPSR), Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan. Electronic address:

Recent studies illustrate that fungi as virus hosts provides a unique platform for hunting viruses and exploring virus/virus and virus/host interactions. Such studies have revealed a number of as-yet-unreported viruses and virus/virus interactions. Among them is a unique intimate relationship between a (+)ssRNA virus, yado-kari virus (YkV1) and an unrelated dsRNA virus, yado-nushi virus (YnV1).

View Article and Find Full Text PDF

Adeno-associated virus (AAV) vectors are highly efficient for liver-targeted gene delivery in murine models and show promise in early phase human clinical trials. This efficiency is capsid-dependent and was only achieved after discovery that the AAV2 vector genome could be trans-encapsidated into the capsids of other AAV serotypes. This confers novel host-vector biology and target tissue tropism.

View Article and Find Full Text PDF

Poliovirus (PV) infection causes severe paralysis, typically of the legs, by destruction of the motor neurons in the spinal cord. In this study, the relationship between PV replication in the spinal cord, damage in the motor neurons and poliomyelitis-like paralysis was analysed in transgenic mice expressing the human PV receptor (TgPVR21). First, a PV replicon encoding firefly luciferase in place of the capsid genes (PV-Fluc mc) was trans-encapsidated in 293T cells and the trans-encapsidated PV-Fluc mc (TE-PV-Fluc mc) was then inoculated into the spinal cords of TgPVR21 mice.

View Article and Find Full Text PDF

RNA virus vectors are attractive vaccine delivery agents capable of directing high-level gene expression without integration into host cell DNA. However, delivery of non-encapsidated RNA viral vectors into animal cells is relatively inefficient. By introducing the tobacco mosaic virus (TMV) origin of assembly into the RNA genome of Semliki Forest virus (SFV), we generated an SFV expression vector that could be efficiently packaged (trans-encapsidated) in vitro by purified TMV coat protein (CP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!