Vertical distribution of nitrifying populations in bacterial biofilms from a full-scale nitrifying trickling filter.

Environ Microbiol

Department of Cell and Molecular Biology, Microbiology, Göteborg University, Box 462, SE-40530, Göteborg, Sweden.

Published: November 2006

Cryosectioned biofilm from three depths (0.5, 3.0 and 6.0 m) in a full-scale nitrifying trickling filter (NTF) were studied using fluorescence in situ hybridization (FISH). A large number of sections were used to determine how the biofilm thickness, structure and community composition varied with depth along the ammonium concentration gradient in the NTF, and how the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were distributed vertically within the biofilm. Both the biofilm thickness and relative biomass content of the biofilm decreased with depth, along with structural differences such as void size and surface roughness. Four AOB populations were found, with two Nitrosomonas oligotropha populations dominating at all depths. A smaller population of Nitrosomonas europaea was present only at 0.5 m, while a population of Nitrosomonas communis increased with depth. The two N. oligotropha populations showed different vertical distribution patterns within the biofilm, indicating different ecophysiologies even though they belong to the same AOB lineage. All NOB were identified as Nitrospira sp., and were generally more associated with the biofilm base than the surface-associated dominating AOB population. Additionally, a small population of anaerobic ammonia-oxidizers was found at 6.0 m, even though the biofilm was well aerated.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-2920.2006.01085.xDOI Listing

Publication Analysis

Top Keywords

vertical distribution
8
full-scale nitrifying
8
nitrifying trickling
8
trickling filter
8
biofilm
8
biofilm thickness
8
oligotropha populations
8
population nitrosomonas
8
distribution nitrifying
4
populations
4

Similar Publications

Industrialized swine facilities adversely affect the health and well-being of Eastern North Carolina residents in the U.S. and are an issue of environmental racism.

View Article and Find Full Text PDF

Metamaterials hold great promise for application in the field of perfect absorbers due to their remarkable ability to manipulate electromagnetic waves. In this work, a full-spectrum ultra-wideband solar absorber with a multilayer metal-dielectric stacked structure is designed. Our absorber is simple and easy to manufacture, with Ti serving as the substrate, overlaid with SiN spacer layers and four pairs of Ti-SiN ring columns.

View Article and Find Full Text PDF

Humic acid (HA) enhances colloidal transport in porous media, yet the mechanisms by which the HA adsorption conformation affects colloid transport remain unclear. This study investigated the influence of HA on the transport of petroleum-hydrocarbon-contaminated soil colloids (TPHs-SC) in saturated sand columns. The presence of TPHs on the colloidal surface occupied adsorption sites, hindering HA from forming a horizontal adsorption conformation, as observed on uncontaminated soil colloids (SC).

View Article and Find Full Text PDF

Nowadays, spaceborne LiDAR technology, particularly ICESat-2, has become a transformative tool in marine environmental research. Unlike traditional passive optical remote sensing methods, ICESat-2 offers detailed vertical structure mapping of oceanic optical properties. Despite the potential of ICESat-2 for observing the optical vertical structure, its application in the East China Sea with complex hydrological conditions and dynamic ecosystems remains limited.

View Article and Find Full Text PDF

Optical properties of InGaN/GaN red quantum well(QW) and their microcavities were studied and compared under optical pumping. Incidence of the excitation laser from the p-side was employed for both structures in order to acquire better emission characteristics. The QW structure was grown on sapphire substrate by metalorganic vapor-phase epitaxy(MOVPE) with a blue pre-layer QW.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!