Unlabelled: The interaction between androgens and GH/IGF-I was studied in male GHR gene disrupted or GHRKO and WT mice during puberty. Androgens stimulate trabecular and cortical bone modeling and increase muscle mass even in the absence of a functional GHR. GHR activation seems to be the main determinant of radial bone expansion, although GH and androgens are both necessary for optimal stimulation of periosteal growth during puberty.

Introduction: Growth hormone (GH) is considered to be a major regulator of postnatal skeletal growth, whereas androgens are considered to be a key regulator of male periosteal bone expansion. Moreover, both androgens and GH are essential for the increase in muscle mass during male puberty. Deficiency or resistance to either GH or androgens impairs bone modeling and decreases muscle mass. The aim of the study was to investigate androgen action on bone and muscle during puberty in the presence and absence of a functional GH/insulin-like growth factor (IGF)-I axis.

Materials And Methods: Dihydrotestosterone (DHT) or testosterone (T) were administered to orchidectomized (ORX) male GH receptor gene knockout (GHRKO) and corresponding wildtype (WT) mice during late puberty (6-10 weeks of age). Trabecular and cortical bone modeling, cortical strength, body composition, IGF-I in serum, and its expression in liver, muscle, and bone were studied by histomorphometry, pQCT, DXA, radioimmunoassay and RT-PCR, respectively.

Results: GH receptor (GHR) inactivation and low serum IGF-I did not affect trabecular bone modeling, because trabecular BMD, bone volume, number, width, and bone turnover were similar in GHRKO and WT mice. The normal trabecular phenotype in GHRKO mice was paralleled by a normal expression of skeletal IGF-I mRNA. ORX decreased trabecular bone volume significantly and to a similar extent in GHRKO and WT mice, whereas DHT and T administration fully prevented trabecular bone loss. Moreover, DHT and T stimulated periosteal bone formation, not only in WT (+100% and +100%, respectively, versus ORX + vehicle [V]; p < 0.05), but also in GHRKO mice (+58% and +89%, respectively, versus ORX + V; p < 0.05), initially characterized by very low periosteal growth. This stimulatory action on periosteal bone resulted in an increase in cortical thickness and occurred without any treatment effect on serum IGF-I or skeletal IGF-I expression. GHRKO mice also had reduced lean body mass and quadriceps muscle weight, along with significantly decreased IGF-I mRNA expression in quadriceps muscle. DHT and T equally stimulated muscle mass in GHRKO and WT mice, without any effect on muscle IGF-I expression.

Conclusions: Androgens stimulate trabecular and cortical bone modeling and increase muscle weight independently from either systemic or local IGF-I production. GHR activation seems to be the main determinant of radial bone expansion, although GHR signaling and androgens are both necessary for optimal stimulation of periosteal growth during puberty.

Download full-text PDF

Source
http://dx.doi.org/10.1359/jbmr.060911DOI Listing

Publication Analysis

Top Keywords

ghrko mice
28
bone modeling
20
bone
17
muscle mass
16
trabecular cortical
12
cortical bone
12
increase muscle
12
bone expansion
12
periosteal growth
12
periosteal bone
12

Similar Publications

Many aspects of inflammation increase with aging in mice and humans. Transcriptomic analysis revealed that many murine anti-aging interventions produce lower levels of pro-inflammatory proteins. Here, we explore the hypothesis that different longevity interventions diminish NF-κB levels, potentially mediating some of the anti-inflammatory benefits of lifespan-extending interventions.

View Article and Find Full Text PDF

Using mouse models and high-throughput proteomics, we conducted an in-depth analysis of the proteome changes induced in response to seven interventions known to increase mouse lifespan. This included two genetic mutations, a growth hormone receptor knockout (GHRKO mice) and a mutation in the Pit-1 locus (Snell dwarf mice), four drug treatments (rapamycin, acarbose, canagliflozin, and 17α-estradiol), and caloric restriction. Each of the interventions studied induced variable changes in the concentrations of proteins across liver, kidney, and gastrocnemius muscle tissue samples, with the strongest responses in the liver and limited concordance in protein responses across tissues.

View Article and Find Full Text PDF

Caloric restriction (CR), which extends lifespan in rodents, leads to increased hepatic fatty acid β-oxidation and oxidative phosphorylation (OXPHOS), with parallel changes in proteins and their mRNAs. Genetic mutants that extend lifespan, including growth hormone receptor knockout (GHRKO) and Snell dwarf (SD) mice, have lower respiratory quotient, suggesting increased reliance on fatty acid oxidation, but the molecular mechanism(s) of this metabolic shift have not yet been worked out. Here we show that both GHRKO and SD mice have significantly higher mRNA and protein levels of enzymes involved in mitochondrial and peroxisomal fatty acid β-oxidation.

View Article and Find Full Text PDF

Growth hormone (GH) has established effects on protein metabolism, such as increasing protein synthesis and decreasing amino acid degradation, but its effects on circulating amino acid levels are less studied. To investigate this relationship, metabolomic analyses were used to measure amino acid concentrations in plasma and feces of mice with alterations to the GH axis, namely bovine GH transgenic (bGH; increased GH action) and GH receptor knockout (GHRKO; GH resistant) mice. To determine the effects of acute GH treatment, GH-injected GH knockout (GHKO) mice were used to measure serum glycine.

View Article and Find Full Text PDF

Deletion of pregnancy-associated plasma protein-A (PAPP-A), a protease that cleaves some but not all IGF1 binding proteins, postpones late-life diseases and extends lifespan in mice, but the mechanism of this effect is unknown. Here we show that PAPP-A knockout (PKO) mice display a set of changes, in multiple tissues, that are characteristic of other varieties of slow-aging mice with alterations in GH production or GH responsiveness, including Ames dwarf, Snell dwarf, and GHRKO mice. PKO mice have elevated UCP1 in brown and white adipose tissues (WAT), and a change in fat-associated macrophage subsets that leads to diminished production of inflammatory cytokines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!