Fractional statistical mechanics.

Chaos

Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992, Russia.

Published: September 2006

The Liouville and first Bogoliubov hierarchy equations with derivatives of noninteger order are derived. The fractional Liouville equation is obtained from the conservation of probability to find a system in a fractional volume element. This equation is used to obtain Bogoliubov hierarchy and fractional kinetic equations with fractional derivatives. Statistical mechanics of fractional generalization of the Hamiltonian systems is discussed. Liouville and Bogoliubov equations with fractional coordinate and momenta derivatives are considered as a basis to derive fractional kinetic equations. The Fokker-Planck-Zaslavsky equation that has fractional phase-space derivatives is obtained from the fractional Bogoliubov equation. The linear fractional kinetic equation for distribution of the charged particles is considered.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2219701DOI Listing

Publication Analysis

Top Keywords

fractional kinetic
12
fractional
11
statistical mechanics
8
liouville bogoliubov
8
bogoliubov hierarchy
8
kinetic equations
8
equations fractional
8
equation
5
fractional statistical
4
mechanics liouville
4

Similar Publications

This study investigates the impact of supercritical antisolvent (SAS) process parameters on the particle formation of telmisartan, a poorly water-soluble drug. A fractional factorial design was employed to examine the influence of the SAS process parameters, including solvent ratio, drug solution concentration, temperature, pressure, injection rate of drug solution, and CO₂ flow rate, on particle formation. Solid-state characterizations of the SAS process particles using XRD and FT-IR confirmed their amorphous nature.

View Article and Find Full Text PDF

The development of efficient and robust catalytic systems based on earth-abundant transition metals for fundamentally new transformations is crucial for sustainable chemical synthesis. Herein, an effective and selective Ni-catalyzed dehydrogenative coupling of alcohols with hydrazines with the liberation of ammonia gas is reported. Although several methods were documented for the -alkylation reaction, the present strategy is conceptually novel, and the reaction proceeds through a pathway involving N-N bond cleavage of phenylhydrazine followed by hydrogen autotransfer.

View Article and Find Full Text PDF

Evaluating dermal absorption of perfluorooctanoic acid (PFOA) and implications for other per- and polyfluoroalkyl substances (PFAS).

Regul Toxicol Pharmacol

December 2024

Gradient, One Beacon St., 17th Floor, Boston, MA, 02108, USA. Electronic address:

To date, only four studies directly measured dermal absorption kinetics of perfluorooctanoic acid (PFOA) in human skin. Reported kinetic parameters spanned two to five orders of magnitude, demonstrating the need to determine the causes of variability and identify the most appropriate dermal absorption factors for use in exposure assessments. We evaluated the reliability and physiological relevance of studies that measured PFOA fractional absorption, steady-state flux (J), and dermal permeability coefficient (K).

View Article and Find Full Text PDF

Density functional theory for fractional charge: Locality, size consistency, and exchange-correlation.

J Chem Phys

December 2024

Department of Chemistry and Center for Computational and Data Sciences, Middle Tennessee State University, 1301 Main St., Murfreesboro, Tennessee 37130, USA.

We show that the exact universal density functional of integer electronic charge leads to an extension to fractional charge in an asymptotic sense when it is applied to a system made of asymptotically separated densities. The extended functional is asymptotically local and is said to be i-local. The concept of i-locality is also applicable to nuclear external potentials, and a natural association exists between the localities of a density and a set of nuclei.

View Article and Find Full Text PDF

Tuning of Zr content in TiMn based multinary alloys by powder metallurgy to fabricate superior hydrogen storage properties.

J Colloid Interface Sci

December 2024

Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China; Shanxi Beike Qiantong Energy Storage Science and Technology Research Institute Co.Ltd., Gaoping 048400, China. Electronic address:

TiMn based multinary alloys make full use of the high abundance of rare earth resources in attractive applications of hydrogen storage but suffer from mediocre hydrogen ab/desorption kinetics and lack the in-depth mechanism analysis of hydrogenation/dehydrogenation behavior. Herein, on the basis of current research on compositional modulation, we utilize the low-cost powder metallurgy method to prepare TiZrMnCrV (x = -0.05, 0, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!