We apply the plasmon hybridization method to a nanoshell with a nonconcentric (offset) core and investigate how the energy and excitation cross section of the plasmon modes depend on the offset distance D of the inner core from the nanoshell center. A two-center spherical coordinate system is used for mathematical convenience. It is shown that the presence of an offset core shifts the plasmon energies and makes higher multipolar nanoshell plasmons dipole active and visible in the optical spectrum. The dependence of the plasmon shifts on D is weak for small offsets but strong for large offsets. The polarization dependence of the optical absorption spectra is found to be relatively weak. The electromagnetic field enhancements are shown to be much larger than on a concentric nanoshell. The results agree very well with results from finite difference time domain simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2352750 | DOI Listing |
Talanta
January 2025
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, China. Electronic address:
The current surface-enhanced Raman scattering (SERS) substrates typically feature a single energy level, posing challenges in coordinating electromagnetic enhancement (EM) and chemical enhancement (CM), thereby limiting the sensitive detection of numerous crucial target molecules. In this study, novel aggregated nanorings (a-NRs) hybridizing Ag, Au and AgCl are constructed as SERS substrates. On one hand, the obtained a-NRs exhibit robust localized surface plasmon resonance absorption, whose wavelength can be tuned to match three commonly used laser wavelengths (532, 633 and 785 nm) to gain strong EM effect.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China.
Nano Lett
January 2025
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China.
Plasmonic superlattices enable the precise manipulation of electromagnetic fields at the nanoscale. However, the optical properties of static lattices are dictated by their geometry and cannot be reconfigured. Here, we present a surface-interface engineered plasmonic superlattice with confined polyelectrolyte-functionalized metal-organic framework (MOF) hybrid layers to tune plasmon resonance for ultrafast chemical sensing.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford, Department of Radiology, Stanford School of Medicine, Stanford University, Palo Alto, CA, 94304, USA. Electronic address:
Small
December 2024
Department of Electrical and Electronic Engineering, Engineering Building A, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
Plasmonic catalysis, whereby either an optically resonating metal couples to a catalytic material or a catalytic metal particle achieves optical resonance, has been a mainstay of photo-catalysis research for the past few decades. However, a new field of metal-dielectric metamaterials, including plasmonic metamaterials, is emerging as the next frontier in catalysis research. With new optical behaviors that can be achieved by sub-wavelength structures, in either periodic or semi-periodic arrangements, metamaterials can overcome some of the limitations of conventional plasmonic catalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!