The Runx (runt-related) family of transcription factors are important regulators of cell fate decisions in early embryonic development, and in differentiation of tissues including blood, neurons, and bone. During skeletal development in mammals, while only Runx2 is essential for osteoblast differentiation, all family members seem to be involved in chondrogenesis. Runx2 and Runx3 control chondrocyte maturation. Both Runx1 and Runx2 are expressed early in mesenchymal condensations, but how they contribute to the initial stages of chondrocyte differentiation is unclear. Here we show that a hierarchy of Runx transcriptional regulation promotes the early program of chondrocyte differentiation from pre-cartilage mesenchyme in the zebrafish head skeleton. We have previously characterized the zebrafish orthologs for all Runx genes. Zebrafish runx2 is duplicated, but not runx1 or runx3. In the work presented here, we determined the early expression pattern of the runx genes in the craniofacial region. The earliest expression detected was that of runx3 in the pharyngeal endoderm, then runx2a and b in mesenchymal condensations, and later runx1 in the epithelium. Using antisense morpholino knockdown analysis, we examined their respective activities in early chondrogenesis. Depletion of runx2b (but not runx2a) and runx3 severely compromised craniofacial cartilage formation. Because runx2b expression was abolished in Runx3 morphants, we propose that endodermal Runx3 has a role in influencing signaling activities from the endoderm to promote chondrocyte differentiation. We also show that, in contrast to data from mouse studies, zebrafish Runx1 is not required in the initial steps of chondrogenesis leading to endochondral bone formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.20957 | DOI Listing |
Cells
December 2024
AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland.
In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.
View Article and Find Full Text PDFMater Today Bio
February 2025
Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
This study explores the utilization of digital light processing (DLP) printing to fabricate complex structures using native gelatin as the sole structural component for applications in biological implants. Unlike approaches relying on synthetic materials or chemically modified biopolymers, this research harnesses the inherent properties of gelatin to create biocompatible structures. The printing process is based on a crosslinking mechanism using a di-tyrosine formation initiated by visible light irradiation.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
Osteoarthritis (OA) is characterized by articular cartilage degeneration, leading to pain and loss of joint function. Recent studies have demonstrated that omega-3 (ω3) polyunsaturated fatty acid (PUFA) supplementation can decrease injury-induced OA progression in mice fed a high-fat diet. Furthermore, PUFAs have been shown to influence the mechanical properties of chondrocyte membranes, suggesting that alterations in mechanosensitive ion channel signaling could contribute to the mechanism by which ω3 PUFAs decreased OA pathogenesis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, China.
Osteoarthritis (OA) is a degenerative bone disease characterized by the destruction of joint cartilage and synovial inflammation, involving intricate immune regulation processes. Disulfidptosis, a novel form of programmed cell death, has recently been identified; however, the effects and roles of disulfidptosis-related genes (DR-DEGs) in OA remain unclear. We obtained six OA datasets from the GEO database, using four as training sets and two as validation sets.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
Cole-Carpenter syndrome (CCS) is a rare autosomal-dominant genetic disease characterized by craniosynostosis, ocular proptosis, hydrocephalus, distinctive facial features, and bone fragility. Previous cases of CCS are associated with genetic variations in P4HB, which encodes the protein disulfide isomerase (PDI), a key enzyme in protein folding. Patients with CCS caused by P4HB mutations often present with short stature, limb deformities, and abnormal epiphyseal plates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!