Purpose: To determine whether apoptosis of retinal neurons induced by excessive light exposure and ischemia-reperfusion injury is altered in caspase-1 knockout mice.

Methods: Eight- to 10-week-old caspase-1 knockout mice (Casp1-/-) and wild-type (WT) mice (C57BL/6) were exposed to diffuse, cool, white fluorescent light of 25,000 lux for 2 h. Other mice were subjected to retinal ischemia by increasing the intraocular pressure to 110 mmHg for 45 min. Electroretinograms (ERGs) were recorded before and after the light exposure. TdT-dUTP terminal nick-end labeling (TUNEL) was performed to identify the apoptotic cells after the insults. The inner retinal thickness was measured to evaluate the retinal injury after the ischemia-reperfusion. Expression of caspase-1 protein was studied by immunohistochemical analysis and Western blotting. Caspase-1-like protease activity was determined by a colorimetric tetrapeptide substrate.

Results: The morphology of the retina and the amplitudes of the a and b waves of the ERGs of Casp1-/- mice did not differ from those of WT mice. After the light exposure, TUNEL-positive cells were observed in the outer nuclear layer of the WT mice retina. The number of TUNEL-positive photoreceptor nuclei after the light exposure, and the number of nuclei in the inner nuclear layer after the ischemia-reperfusion injury, were significantly less in Casp1-/- mice than in WT mice. There were more caspase-1-positive photoreceptor cells in WT mice after the light injury. The inner retinal layer of Casp1-/- mice was significantly thicker in Casp1-/- mice than in WT mice 2 weeks after the ischemic insult.

Conclusions: Retinal neuronal apoptosis was less prominent in Casp1-/- mice after excessive light exposure and ischemia-reperfusion injury. These data indicate that caspase-1 plays a role in retinal neuronal apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10384-006-0352-yDOI Listing

Publication Analysis

Top Keywords

light exposure
20
casp1-/- mice
20
mice
14
retinal neuronal
12
caspase-1 knockout
12
ischemia-reperfusion injury
12
knockout mice
8
excessive light
8
exposure ischemia-reperfusion
8
inner retinal
8

Similar Publications

Stress Granule Induction in Rat Retinas Damaged by Constant LED Light.

Invest Ophthalmol Vis Sci

January 2025

Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina.

Purpose: Stress granules (SGs) are cytoplasmic biocondensates formed in response to various cellular stressors, contributing to cell survival. Although implicated in diverse pathologies, their role in retinal degeneration (RD) remains unclear. We aimed to investigate SG formation in the retina and its induction by excessive LED light in an RD model.

View Article and Find Full Text PDF

Photoactive complexes of bioessential 3d metals, activable within the phototherapeutic window (650-900 nm), have gained widespread interest due to their therapeutic potential. Herein, we report the synthesis, characterization, and light-enhanced anticancer and antibacterial properties of four new dinuclear Co(II) complexes: [Co(phen)(cat)] (Co-1), [Co(dppz)(cat)] (Co-2), [Co(phen)(esc)] (Co-3), and [Co(dppz)(esc)] (Co-4). In these complexes, phen (1,10-phenanthroline) and dppz (dipyrido[3,2-:2',3'-]phenazine) act as neutral N,N-donor ligands, while cat and esc serve as O,O-donor catecholate ligands derived from catechol (1,2-dihydroxybenzene) and esculetin (6,7-dihydroxy coumarin).

View Article and Find Full Text PDF

Dynamic Covalent Sulfur-Selenium Rich Polymers via Inverse Vulcanization for High Refractive Index, High Transmittance, and UV Shielding Materials.

Macromol Rapid Commun

January 2025

College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.

Recent advancements in inverse vulcanization have led to the development of sulfur-rich polymers with diverse applications. However, progress is constrained by the harsh high-temperature reaction conditions, limited applicability, and the generation of hazardous HS gas. This study presents an induced IV method utilizing selenium octanoic acid, yielding sulfur-selenium rich polymers with full atom economy, even at a low-temperatures of 100-120 °C.

View Article and Find Full Text PDF

Carefully timed light exposure is a promising countermeasure to overcome the negative sleep and circadian implications of shift work. However, many lighting interventions are static and applied at the group level (e.g.

View Article and Find Full Text PDF

Effective adaptation of flight muscles to tebuconazole-induced oxidative stress in honey bees.

Heliyon

January 2025

Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary.

The widespread and excessive agricultural use of azole fungicide tebuconazole poses a major threat to pollinator species including honey bee colonies as highlighted by recent studies. This issue is of growing importance, due to the intensification of modern agriculture and the increasing amount of the applied chemicals, serving as a major and recent problem from both an ecotoxicological and an agricultural point of view. The present study aims to detect the effects of acute sublethal tebuconazole exposure focusing on the redox homeostasis of honey bee flight muscles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!