Homologous recombination is essential for genetic exchange, meiosis and error-free repair of double-strand breaks. Central to this process is Rad52, a conserved homo-oligomeric ring-shaped protein, which mediates the exchange of the early recombination factor RPA by Rad51 and promotes strand annealing. Here, we report that Rad52 of Saccharomyces cerevisiae is modified by the ubiquitin-like protein SUMO, primarily at two sites that flank the conserved Rad52 domain. Sumoylation is induced on DNA damage and triggered by Mre11-Rad50-Xrs2 (MRX) complex-governed double-strand breaks (DSBs). Although sumoylation-defective Rad52 is largely recombination proficient, mutant analysis revealed that the SUMO modification sustains Rad52 activity and concomitantly shelters the protein from accelerated proteasomal degradation. Furthermore, our data indicate that sumoylation becomes particularly relevant for those Rad52 molecules that are engaged in recombination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncb1488 | DOI Listing |
Int J Mol Sci
January 2025
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China.
RAD52 plays crucial roles in several aspects of mammalian cells, including DNA double-strand breaks repair, viral infection, cancer development, and antibody class switching. To comprehensively elucidate the role of RAD52 in maintaining genome stability and uncover additional functions of RAD52 in mammals, we performed the transcriptomics and proteomics analysis of the liver of knockout mice. Transcriptomics analysis reveals overexpression of mitochondrial genes in the liver of knockout (RAD52KO) mice.
View Article and Find Full Text PDFGenes Cells
January 2025
Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China.
Serine-arginine protein kinases (SRPKs) play important roles in diverse biological processes such as alternative splicing and cell cycle. However, the functions of SRPKs in DNA damage response remain unclear. Here we characterized the function of SRPKs homolog Dsk1 in regulating DNA repair in the fission yeast Schizosaccharomyces pombe.
View Article and Find Full Text PDFbioRxiv
December 2024
Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
Human RAD52 is a prime target for synthetical lethality approaches to treat cancers with deficiency in homologous recombination. Among multiple cellular roles of RAD52, its functions in homologous recombination repair and protection of stalled replication forks appear to substitute those of the tumor suppressor protein BRCA2. However, the mechanistic details of how RAD52 can substitute BRCA2 functions are only beginning to emerge.
View Article and Find Full Text PDFNat Aging
December 2024
Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY, USA.
Genome instability is a hallmark of aging, with the highly repetitive ribosomal DNA (rDNA) within the nucleolus being particularly prone to genome instability. Nucleolar enlargement accompanies aging in organisms ranging from yeast to mammals, and treatment with many antiaging interventions results in small nucleoli. Here, we report that an engineered system to reduce nucleolar size robustly extends budding yeast replicative lifespan in a manner independent of protein synthesis rate or rDNA silencing.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!