Flaviviral diseases such as yellow fever, Japanese encephalitis (JE) and dengue hemorrhagic fever cause enormous morbidity and mortality worldwide. There is an urgent need for alternative technologies for mass vaccination against these and other diseases, particularly in the developing world. Here, we administered a live attenuated, chimeric JE vaccine (ChimeriVax)-JE) to nonhuman primates by skin microabrasion and intradermal delivery using microneedles. Both cutaneous delivery methods induced mild viremia similar in magnitude to that observed following subcutaneous (SC) injection. The duration of viremia induced by cutaneous delivery (5-7 days), however, was substantially longer than via SC (0-3 days). In addition, mean neutralizing antibody titers in cutaneous delivery groups were up to 7-fold greater than via SC injection. There were no safety issues identified and both cutaneous delivery methods appeared to be well tolerated. Thus, cutaneous delivery may represent a minimally-invasive alternative approach for flavivirus vaccines that more closely resembles the natural route of viral infection.

Download full-text PDF

Source
http://dx.doi.org/10.4161/hv.1.3.1797DOI Listing

Publication Analysis

Top Keywords

cutaneous delivery
24
live attenuated
8
attenuated chimeric
8
japanese encephalitis
8
delivery methods
8
cutaneous
6
delivery
6
delivery live
4
chimeric flavivirus
4
flavivirus vaccine
4

Similar Publications

Background: Various adjunct therapies are available for wound healing in addition to standard care. Topical oxygen therapy (TCOT) is one such novel therapy. We conducted a systematic review and meta-analysis to evaluate the role of TCOT in the healing of cutaneous wounds of any etiology.

View Article and Find Full Text PDF

Paeoniflorin is a natural pharmaceutical ingredient with a widely biological activity. However, as a hydrophilic drug, the problem of low transdermal rate limits its clinical application. To overcome this shortage, LUVs were used as biocompatible carriers of paeoniflorin in this study.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) has been utilized in various medical devices using its oxidative nature. Recent studies have provided evidence that CAP can facilitate the delivery of large, hydrophilic molecules through the epidermis to the dermis. On the other hand, a new approach called low-intensity CAP (LICAP) has been developed, allowing the plasma level to be controlled within a subtoxic range, thereby demonstrating various biological benefits without tissue damage.

View Article and Find Full Text PDF

Skin cancer stands as a challenging global health concern, necessitating innovative approaches to cure deficiencies within traditional therapeutic modalities. While conventional drug delivery methods through injection or oral administration have long prevailed, the emergence of topical drug administration presents a compelling alternative. The skin, aside from offering a swift and painless procedure, serves as a reservoir, maintaining drug efficacy over extended durations.

View Article and Find Full Text PDF

Hydrogen sulfide (H2S) plays crucial inflammatory modulating roles, representing a promising candidate for anti-inflammatory therapies. However, current H2S delivery approaches lack sufficient specificity against inflammatory response. Herein, regarding the overexpressed aminopeptidase N (APN) at the inflammation sites, an APN-activated self-immolative carbonyl sulfide (COS)/H2S donor (AlaCOS) was developed for inflammatory response-specific H2S delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!