The NifEN protein complex serves as a molecular scaffold where some of the steps for the assembly of the iron-molybdenum cofactor (FeMo-co) of nitrogenase take place. A His-tagged version of the NifEN complex has been previously purified and shown to carry two identical [4Fe-4S] clusters of unknown function and a [Fe-S]-containing FeMo-co precursor. We have improved the purification of the his-NifEN protein from a DeltanifHDK strain of Azotobacter vinelandii and have found that the amounts of iron and molybdenum within NifEN were significantly higher than those reported previously. In an in vitro FeMo-co synthesis system with purified components, the NifEN protein served as a source of both molybdenum and a [Fe-S]-containing FeMo-co precursor, showing significant FeMo-co synthesis activity in the absence of externally added molybdate. Thus, the NifEN scaffold protein, purified from DeltanifHDK background, contained the Nif-Bco-derived Fe-S cluster and molybdenum, although these FeMo-co constituents were present at different levels within the protein complex.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M606820200DOI Listing

Publication Analysis

Top Keywords

nifen protein
12
protein complex
12
femo-co precursor
12
molybdenum femo-co
8
azotobacter vinelandii
8
deltanifhdk strain
8
[fe-s]-containing femo-co
8
femo-co synthesis
8
femo-co
7
protein
6

Similar Publications

Iron-molybdenum cofactor synthesis by a thermophilic nitrogenase devoid of the scaffold NifEN.

Proc Natl Acad Sci U S A

November 2024

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid e Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, Madrid 28223, Spain.

The maturation and installation of the active site metal cluster (FeMo-co, FeSCMo--homocitrate) in Mo-dependent nitrogenase requires the protein product of the gene for production of the FeS cluster precursor (NifB-co, [FeSC]) and the action of the maturase complex composed of the protein products from the and genes. However, some putative diazotrophic bacteria, like sp. RS-1, lack the genes, suggesting an alternative pathway for maturation of FeMo-co that does not require NifEN.

View Article and Find Full Text PDF

Cofactor maturase NifEN: A prototype ancient nitrogenase?

Sci Adv

June 2024

Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697- 3900, USA.

Nitrogenase plays a key role in the global nitrogen cycle; yet, the evolutionary history of nitrogenase and, particularly, the sequence of appearance between the homologous, yet distinct NifDK (the catalytic component) and NifEN (the cofactor maturase) of the extant molybdenum nitrogenase, remains elusive. Here, we report the ability of NifEN to reduce N at its surface-exposed L-cluster ([FeSC]), a structural/functional homolog of the M-cluster (or cofactor; [(-homocitrate)MoFeSC]) of NifDK. Furthermore, we demonstrate the ability of the L-cluster-bound NifDK to mimic its NifEN counterpart and enable N reduction.

View Article and Find Full Text PDF

Nitrogenase cofactor biosynthesis using proteins produced in mitochondria of .

mBio

February 2024

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Spain.

Biological nitrogen fixation, the conversion of inert N to metabolically tractable NH, is only performed by certain microorganisms called diazotrophs and is catalyzed by the nitrogenases. A [7Fe-9S-C-Mo--homocitrate]-cofactor, designated FeMo-co, provides the catalytic site for N reduction in the Mo-dependent nitrogenase. Thus, achieving FeMo-co formation in model eukaryotic organisms, such as , represents an important milestone toward endowing them with a capacity for Mo-dependent biological nitrogen fixation.

View Article and Find Full Text PDF

The nitrogen-fixing microbe Azotobacter vinelandii has the ability to produce three genetically distinct, but mechanistically similar, components that catalyze nitrogen fixation. For two of these components, the Mo-dependent and V-dependent components, their corresponding metal-containing active site cofactors, designated FeMo-cofactor and FeV-cofactor, respectively, are preformed on separate molecular scaffolds designated NifEN and VnfEN, respectively. From prior studies, and the present work, it is now established that neither of these scaffolds can replace the other with respect to their cofactor assembly functions.

View Article and Find Full Text PDF

NifEN plays a crucial role in the biosynthesis of nitrogenase, catalyzing the final step of cofactor maturation prior to delivering the cofactor to NifDK, the catalytic component of nitrogenase. The difficulty in expressing NifEN, a complex, heteromultimeric metalloprotein sharing structural/functional homology with NifDK, is a major challenge in the heterologous expression of nitrogenase. Herein, we report the expression and engineering of Azotobacter vinelandii NifEN in Escherichia coli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!