Biotransformation of geldanamycin and 17-allylamino-17-demethoxygeldanamycin by human liver microsomes: reductive versus oxidative metabolism and implications.

Drug Metab Dispos

Johnson & Johnson Pharmaceutical Research and Development, LLC, P.O. Box 776, Welsh and McKean Roads, Spring House, PA 19477, USA.

Published: January 2007

Comparative metabolite profiling of geldanamycin and 17-allylamino-17-demethoxygeldanamycin (17AAG) using human liver microsomes in normoxia and hypoxia was conducted to understand their differential metabolic fates. Geldanamycin bearing a 17-methoxy group primarily underwent reductive metabolism, generating the corresponding hydroquinone under both conditions. The formed hydroquinone resists further metabolism and serves as a reservoir. On exposure to oxygen, this hydroquinone slowly reverts to geldanamycin. In the presence of glutathione, geldanamycin was rapidly converted to 19-glutathionyl geldanamycin hydroquinone, suggesting its reactive nature. In contrast, the counterpart (17AAG) preferentially remained as its quinone form, which underwent extensive oxidative metabolism on both the 17-allylamino sidechain and the ansa ring. Only a small amount (<1%) of 19-glutathione conjugate of 17AAG was detected in the incubation of 17AAG with glutathione at 37 degrees C for 60 min. To confirm the differential nature of quinone-hydroquinone conversion between the two compounds, hypoxic incubations with human cytochrome P450 reductase at 37 degrees C and direct injection analysis were performed. Approximately 89% of hydroquinone, 5% of quinone, and 6% of 17-O-demethylgeldanamycin were observed after 1-min incubation of geldanamycin, whereas about 1% of hydroquinone and 99% of quinone were found in the 60-min incubation of 17AAG. The results provide direct evidence for understanding the 17-substituent effects of these benzoquinone ansamycins on their phase I metabolism, reactivity with glutathione, and acute hepatotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.106.009639DOI Listing

Publication Analysis

Top Keywords

geldanamycin 17-allylamino-17-demethoxygeldanamycin
8
human liver
8
liver microsomes
8
oxidative metabolism
8
geldanamycin
5
biotransformation geldanamycin
4
17-allylamino-17-demethoxygeldanamycin human
4
microsomes reductive
4
reductive versus
4
versus oxidative
4

Similar Publications

Idiopathic pulmonary arterial hypertension (IPAH) is a progressive disease that affects the pulmonary arteries, resulting in increased pulmonary vascular resistance and right ventricular dysfunction, which can ultimately lead to heart failure and death. The molecular substrates of IPAH are poorly understood while diagnostics and therapeutics innovation remain as unmet needs for this debilitating disease. In this study, a network-based methodology was used to uncover the salient molecular mechanisms of IPAH to inform drug and diagnostic discovery, and personalized medicine.

View Article and Find Full Text PDF

The role of heat shock protein 90 in the proliferation of Babesia gibsoni in vitro.

Exp Parasitol

August 2023

Laboratory of Veterinary Small Animal Internal Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 202-8550, Japan. Electronic address:

The present study investigated the role of heat shock protein 90 (HSP90) in the proliferation and survival of Babesia gibsoni in vitro. To detect the effect on the entry of B. gibsoni into host erythrocytes, the parasite was incubated with an antibody against B.

View Article and Find Full Text PDF

The available antifilarial medications are effective only against the larval stage of the filarial parasite. As a result, there is a pressing need for an adulticidal drug. The development of drugs requires the identification of molecular targets that are critical for parasite life.

View Article and Find Full Text PDF

The molecular chaperone HSP90 plays an essential role in cancer occurrence and development. Therefore, it is an important target for the development of anticancer drugs. 1,3-Dibenzyl-2-aryl imidazolidine ( is a previously reported inhibitor of HSP90; however, its anticancer activity is poor.

View Article and Find Full Text PDF

Heat shock protein 90 (Hsp90) is critical for cell homeostasis but its role on bovine oocyte maturation is not well known. We investigated the importance of Hsp90 for competence of bovine oocyte using 17-(allylamino)-17-demethoxygeldanamycin (17AAG), an inhibitor of Hsp90, during maturation (IVM). Three experiments evaluated the effect of 17AAG on developmental competence of oocytes matured under thermoneutral (38.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!