The amino acids glutamate (Glu) and glycine (Gly) trigger large, rapid rises in cytosolic Ca(2+) concentration and a concomitant rise in membrane potential (depolarization) in plants. The possibility that plant homologs of neuronal ionotropic glutamate receptors mediate these neuron-like ionic responses was tested in Arabidopsis (Arabidopsis thaliana) seedlings using a combination of Ca(2+) measurements, electrophysiology, and reverse genetics. The membrane depolarization triggered by Glu was greatly reduced or completely blocked in some conditions by mutations in GLR3.3, one of the 20 GLR genes in Arabidopsis. The same mutations completely blocked the associated rise in cytosolic Ca(2+). These results genetically demonstrate the participation of a glutamate receptor in the rapid ionic responses to an amino acid. The GLR3.3-independent component of the depolarization required Glu concentrations above 25 mum, did not display desensitization, and was strongly suppressed by increasing extracellular pH. It is suggested to result from H(+)-amino acid symport. Six amino acids commonly present in soils (Glu, Gly, alanine, serine, asparagine, and cysteine) as well as the tripeptide glutathione (gamma-glutamyl-cysteinyl-Gly) were found to be strong agonists of the GLR3.3-mediated responses. All other amino acids induced a small depolarization similar to the non-GLR, putative symporter component and in most cases evoked little or no Ca(2+) rise. From these results it may be concluded that sensing of six amino acids in the rhizosphere and perhaps extracellular peptides is coupled to Ca(2+) signaling through a GLR-dependent mechanism homologous to a fundamental component of neuronal signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1630757PMC
http://dx.doi.org/10.1104/pp.106.088989DOI Listing

Publication Analysis

Top Keywords

amino acids
16
glutamate receptor
8
cytosolic ca2+
8
ionic responses
8
completely blocked
8
responses amino
8
amino
5
ca2+
5
calcium entry
4
entry mediated
4

Similar Publications

Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.

View Article and Find Full Text PDF

Platform chemicals from renewable resources with broad applications are highly desirable, particularly for replacing fossil-based monomers. Bifunctional aliphatic ester-aldehydes, accessible via regioselective hydroformylation of unsaturated oleochemicals, can be converted into linear ω-amino/ω-hydroxy esters and dicarboxylic acids-key building blocks for biobased aliphatic polycondensates. However, their success hinges on efficient, economically viable production, with catalyst recycling being critical.

View Article and Find Full Text PDF

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Identification and functional characterization of AsWRKY9, a WRKY transcription factor modulating alliin biosynthesis in garlic (Allium sativum L.).

BMC Biol

January 2025

The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.

Background: The variations in alliin content are a crucial criterion for evaluating garlic quality and is the sole precursor for allicin biosynthesis, which is significant for the growth, development, and stress response of garlic. WRKY transcription factors are essential for enhancing stress resistance by regulating the synthesis of plant secondary metabolites. However, the molecular mechanisms regulating alliin biosynthesis remain unexplored.

View Article and Find Full Text PDF

Optimization and characterization studies of poultry waste valorization for peptone production using a newly Egyptian Bacillus subtilis strain.

AMB Express

January 2025

Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo, 11241, Egypt.

Valorization of poultry waste is a significant challenge addressed in this study, which aimed to produce cost-effective and sustainable peptones from poultry waste. The isolation process yielded the highly potent proteolytic B.subtilis isolate P6, identified through 16S rRNA gene sequencing to share 94% similarity with the B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!