Competence-dependent bacteriocin production by Streptococcus gordonii DL1 (Challis).

J Bacteriol

Department of Oral Sciences, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.

Published: February 2007

The production of streptocins STH(1) and STH(2) by Streptococcus gordonii DL1 (Challis) is directly controlled by the competence regulon, which requires intact comR and comAB loci. The streptocin (sth) locus comprises two functional genes, sthA and sthB. Whereas STH(1) activity requires sthA alone, STH(2) activity depends on both genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1797357PMC
http://dx.doi.org/10.1128/JB.01174-06DOI Listing

Publication Analysis

Top Keywords

streptococcus gordonii
8
gordonii dl1
8
dl1 challis
8
competence-dependent bacteriocin
4
bacteriocin production
4
production streptococcus
4
challis production
4
production streptocins
4
streptocins sth1
4
sth1 sth2
4

Similar Publications

Unlabelled: Periodontitis (PD) is a polymicrobial dysbiotic immuno-inflammatory disease. Toll-like receptors (TLRs) are present on gingival epithelial cells and recognize pathogen-associated molecular patterns (PAMPs) on pathogenic bacteria, induce the secretion of proinflammatory cytokines, and initiate innate and adaptive antigen-specific immune responses to eradicate the invading microbes. Since PD is a chronic inflammatory disease, TLR2/TLR4 plays a vital role in disease pathogenesis and maintaining the periodontium during health.

View Article and Find Full Text PDF

Interaction between bacterial adhesins leads to coaggregation by the oral bacteria and .

mBio

January 2025

Antimicrobial Resistance, Omics and Microbiota Group, Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom.

is an unusual diderm firmicute that plays a central role in the formation of dental biofilm formation through coaggregation with many other oral bacteria. However, the molecular interactions leading to oral biofilm formation are largely unknown. In a recent study (L.

View Article and Find Full Text PDF

Gelatin methacryloyl @MP196/exos hydrogel induced neutrophil apoptosis and macrophage M2 polarization to inhibit periodontal bone loss.

Colloids Surf B Biointerfaces

April 2025

Department of Periodontology, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070,  PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China. Electronic address:

Objectives: Periodontitis is an inflammatory and destructive disease caused by dental plaque, which can result in the immune microenvironment disorders and loss of periodontal support tissue. In order to promote the restoration of local microenvironment stability, a functional biomaterial Gelatin methacryloyl @MP196/exos based on characteristics of disease occurrence is designed.

Methods: Transmission electron microscopy, nanosight particle tracking analysis and western blot analysis were applied to prove the presence of exos in GelMA@MP196/exos.

View Article and Find Full Text PDF

Photodynamic disruption of a polymicrobial biofilm of two periodontal species using indocyanine green-loaded nanospheres.

Photodiagnosis Photodyn Ther

December 2024

Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-Dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan. Electronic address:

Objective: Antimicrobial photodynamic therapy (aPDT) is considered a potential treatment for biofilm infections, which have become an increasing health issue because of the rise in antimicrobial resistance. This study aimed to evaluate the bactericidal effect of aPDT using indocyanine green-loaded nanospheres with chitosan coating (ICG-Nano/c) against polymicrobial periodontal biofilms.

Methods: Composite biofilms of Porphyromonas gingivalis and Streptococcus gordonii were constructed in 96-well plates, and aPDT with ICG-Nano/c and an 810 nm diode laser was performed either by direct irradiation or transmitting irradiation through a 3-mm-thick gingival model.

View Article and Find Full Text PDF

Objective: To evaluate the adjunctive use of the probiotic Bifidobacterium animalis subsp. lactis HN019 (B. lactis HN019) to conventional therapy on clinical and microbiological parameters in patients with generalized gingivitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!