A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ca2+ potentiates cAMP-dependent expression of urokinase-type plasminogen activator gene through a calmodulin- and protein kinase C-independent mechanism. | LitMetric

In the porcine renal epithelial cell line, LLC-PK1, activation of the cAMP-dependent signal transduction pathway induces the urokinase-type plasminogen activator (uPA) gene. We show here that the cAMP response is enhanced when the intracellular calcium concentration is increased. When LLC-PK1 cells were treated with the calcium ionophore ionomycin alone, there was no uPA mRNA accumulation. However, in the presence of ionomycin the dose-response of 8-bromo-cAMP (Br-cAMP) with respect to uPA mRNA accumulation was shifted toward the lower concentrations of Br-cAMP. A Northern blot analysis after the inhibition of RNA synthesis and nuclear run-on assays showed that the synergistic effect of Ca2+ could be attributed to increases in uPA gene transcription and mRNA stability. In the presence of cycloheximide, a protein synthesis inhibitor, uPA mRNA was stabilized, but the effect of ionomycin on Br-cAMP-induced mRNA accumulation was still maintained. The result suggests that the Ca2+, at least on transcription, does not require new protein synthesis. Ionomycin treatment did not modify the activity of the cAMP-dependent protein kinase, suggesting that Ca2+ either affects a step in the pathway between the kinase and the uPA gene, or acts independently of the cAMP-dependent protein kinase pathway. The effect of ionomycin was not suppressed by protein kinase C down-regulation nor by inhibitors of calmodulin. Synergism was also observed when Br-cAMP was replaced with calcitonin, a peptide hormone which is coupled to adenylate cyclase, and when ionomycin was replaced with another ionophore A23187, suggesting that the synergism is due to an interaction between cAMP-dependent and Ca2(+)-dependent signal transduction pathways.

Download full-text PDF

Source

Publication Analysis

Top Keywords

protein kinase
16
upa gene
12
upa mrna
12
mrna accumulation
12
urokinase-type plasminogen
8
plasminogen activator
8
signal transduction
8
protein synthesis
8
camp-dependent protein
8
protein
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!