When preparing peroxisome proliferator-activated receptor (PPAR)alpha:low-density lipoprotein receptor (LDLR) (-/-) double knockout mice, we unexpectedly found a unique gender- and age-specific obesity in the F1 generation, PPARalpha (+/-):LDLR (+/-), even in mice fed standard chow. Body weights of the male heterozygous mice increased up to about 60 g at 75 weeks of age, then decreased by about 30 g at 100 weeks of age. More than 95% of the heterozygous mice between 35- and 75-week-olds were overweight. Of interest, the obese heterozygous mice also exhibited hyperinsulinemia correlating with moderate insulin resistance. Hepatic gene expression of LDLR was lower than expected in the heterozygous mice, particularly at 50 and 75 weeks of age. In contrast, the hepatic expression of PPARalpha was higher than expected in obese heterozygous mice, but decreased in non-obese older heterozygous mice. Modulated expression of these genes may be partially associated with the onset of the hyperinsulinemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2006.09.048 | DOI Listing |
Immunohorizons
January 2025
Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.
CD73 is ubiquitously expressed and regulates critical functions across multiple organ systems. The sequential actions of CD39 and CD73 accomplish the conversion of adenosine triphosphate to adenosine and shift the adenosine triphosphate-driven proinflammatory immune cell milieu toward an anti-inflammatory state. This immunological switch is a major mechanism by which regulatory T (Treg) cells control inflammation.
View Article and Find Full Text PDFAtrial remodeling is a major pathophysiological mechanism of atrial fibrillation (AF). Atrial remodeling progresses with aging and background diseases, including hypertension, heart failure, and AF itself. However, its mechanism of action and reversibility have not been completely elucidated.
View Article and Find Full Text PDFNeuron
January 2025
Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany. Electronic address:
In Alzheimer's disease (AD) research, the 5xFAD mouse model is commonly used as a heterozygote crossed with other genetic models to study AD pathology. We investigated whether the parental origin of the 5xFAD transgene affects plaque deposition. Using quantitative light-sheet microscopy, we found that paternal inheritance of the transgene led to a 2-fold higher plaque burden compared with maternal inheritance, a finding consistent across multiple 5xFAD colonies.
View Article and Find Full Text PDFJCI Insight
January 2025
Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America.
Aortic dissection or rupture is a major cause of mortality in vascular Ehlers-Danlos Syndrome (vEDS), a connective tissue disorder caused by heterozygous mutations in the COL3A1 gene. C57BL6/J (BL6) mice carrying the Col3a1 G938D/+ mutation recapitulate the vEDS vascular phenotype and die suddenly of aortic rupture/dissection. However, 129S6/SvEvTac (129) mice expressing the same Col3a1 G938D/+ mutation show near-complete life-long protection from vascular rupture.
View Article and Find Full Text PDFDev Biol
January 2025
The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia. Electronic address:
The MYST family histone acetyltransferase gene, KAT6B (MYST4, MORF, QKF) is mutated in two distinct human congenital disorders characterised by intellectual disability, facial dysmorphogenesis and skeletal abnormalities; Say-Barber-Biesecker-Young-Simpson variant of Ohdo syndrome and Genitopatellar syndrome. Despite its requirement in normal skeletal development, the cellular and transcriptional effects of KAT6B in skeletogenesis have not been thoroughly studied. Here, we show that germline deletion of the Kat6b gene in mice causes premature ossification in vivo, resulting in shortened craniofacial elements and increased bone density, as well as shortened tibias with an expanded pre-hypertrophic layer, as compared to wild type controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!