PPARgamma is essential for adipogenesis and metabolic homeostasis. We describe mutations in the DNA and ligand binding domains of human PPARgamma in lipodystrophic, severe insulin resistance. These receptor mutants lack DNA binding and transcriptional activity but can translocate to the nucleus, interact with PPARgamma coactivators and inhibit coexpressed wild-type receptor. Expression of PPARgamma target genes is markedly attenuated in mutation-containing versus receptor haploinsufficent primary cells, indicating that such dominant-negative inhibition operates in vivo. Our observations suggest that these mutants restrict wild-type PPARgamma action via a non-DNA binding, transcriptional interference mechanism, which may involve sequestration of functionally limiting coactivators.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1821092 | PMC |
http://dx.doi.org/10.1016/j.cmet.2006.09.003 | DOI Listing |
J Biol Chem
October 2024
Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, USA. Electronic address:
MAFA and MAFB are related basic-leucine-zipper domain-containing transcription factors which have important overlapping and distinct regulatory roles in a variety of cellular contexts, including hormone production in pancreatic islet cells. Here, we first examined how mutating conserved MAF protein-DNA contact sites obtained from X-ray crystal structure analysis impacted their DNA-binding and Insulin enhancer-driven activity. While most of these interactions were essential and their disruption severely compromised activity, we identified that regions outside of these contact sites also contributed to transcriptional activity.
View Article and Find Full Text PDFbioRxiv
July 2024
Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States.
Angiogenesis is a highly coordinated process involving the control of various endothelial cell behaviors. Mechanisms for transcription factor involvement in the regulation of endothelial cell dynamics and angiogenesis have become better understood, however much remains unknown, especially the role of non-DNA binding transcriptional cofactors. Here, we show that Zmiz1, a transcription cofactor, is enriched in the endothelium and critical for embryonic vascular development, postnatal retinal angiogenesis, and pathological angiogenesis in oxygen induced retinopathy (OIR).
View Article and Find Full Text PDFPlant Cell Physiol
October 2024
Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Wonju-Si 220-710, Republic of Korea.
The INDUCER OF CBF EXPRESSION 1/C-REPEAT BINDING FACTOR (ICE1/CBF) pathway plays a crucial role in plant responses to cold stress, impacting growth and development. Here, we demonstrated that ATBS1-INTERACTING FACTOR 2 (AIF2), a non-DNA-binding basic helix-loop-helix transcription factor, positively regulates freezing tolerance through the ICE1/CBF-induced cold tolerance pathway in Arabidopsis. Cold stress transcriptionally upregulated AIF2 expression and induced AIF2 phosphorylation, thereby stabilizing the AIF2 protein during early stages of cold acclimation.
View Article and Find Full Text PDFFEBS Lett
March 2024
Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India.
Apoptosis-inducing factor 1 (AIF1) overexpression is intimately linked to the sensitivity of yeast cells towards hydrogen peroxide or acetic acid. Therefore, studying the mechanism of AIF1 regulation in the cell would provide a significant understanding of the factors guiding yeast apoptosis. In this report, we show the time-dependent induction of AIF1 under hydrogen peroxide stress.
View Article and Find Full Text PDFJ Int Med Res
January 2024
Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.
CBP/p300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (CITED1) is a transcriptional activator belonging to the non-DNA-binding transcription co-regulator family. It regulates diverse pathways, including the transforming growth factor/bone morphogenetic protein/SMAD, estrogen, Wnt-β-catenin, and androgen-AR signaling pathways, by binding to CBP/p300 co-activators through its conserved transactivation domain CR2. CITED1 plays an important role in embryonic development and a certain regulatory role in the occurrence and development of various tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!