We previously reported that cyclophilin A protein is up-regulated in cortical neuronal cultures following several preconditioning treatments. In the present study, we have demonstrated that adenoviral-mediated over-expression of cyclophilin A in rat cortical neuronal cultures can protect neurons from oxidative stress (induced by cumene hydroperoxide) and in vitro ischemia (induced by oxygen glucose deprivation). We subsequently demonstrated that cultured neurons, but not astrocytes, express the recently identified putative cyclophilin A receptor, CD147 (also called neurothelin, basigin and EMMPRIN), and that administration of purified cyclophilin A protein to neuronal cultures induces a rapid but transient phosphorylation of the extracellular signal-regulated kinase (ERK) 1/2. Furthermore, administration of purified cyclophilin A protein to neuronal cultures protects neurons from oxidative stress and in vitro ischemia. Interestingly, we detected up-regulation of cyclophilin A mRNA, but not protein in the hippocampus following a 3-min period of sublethal global cerebral ischemia in the rat. Despite our in vivo findings, our in vitro data show that cyclophilin A has both intracellular- and extracellular-mediated neuroprotective mechanisms. To this end, we propose cyclophilin A's extracellular-mediated neuroprotection occurs via CD147 receptor signalling, possibly by activation of ERK1/2 pro-survival pathways. Further characterization of cyclophilin A's neuroprotective mechanisms may aid the development of a neuroprotective therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2006.08.012DOI Listing

Publication Analysis

Top Keywords

neuronal cultures
16
cyclophilin protein
12
cyclophilin
11
protect neurons
8
cortical neuronal
8
neurons oxidative
8
oxidative stress
8
vitro ischemia
8
administration purified
8
purified cyclophilin
8

Similar Publications

Sepsis-associated encephalopathy (SAE) is a severe and frequent septic complication, characterized by neuronal damage as key pathological features. The astrocyte-microglia crosstalk in the central nervous system (CNS) plays important roles in various neurological diseases. However, how astrocytes interact with microglia to regulate neuronal injury in SAE is poorly defined.

View Article and Find Full Text PDF

Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks. Transplantation of neural stem cells holds promise to repair disrupted connections. Yet, ensuring the survival and integration of neural stem cells into the host neural circuit remains a formidable challenge.

View Article and Find Full Text PDF

Sympathetic nerves regulate nearly all human organs. Their peripheral nerves are present in tumor tissue. Activation of the sympathetic nervous system promotes malignant transformation in several cancers.

View Article and Find Full Text PDF

Oligodendrocyte precursor cells facilitate neuronal lysosome release.

Nat Commun

January 2025

Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.

Oligodendrocyte precursor cells (OPCs) shape brain function through many non-canonical regulatory mechanisms beyond myelination. Here we show that OPCs form contacts with their processes on neuronal somata in a neuronal activity-dependent manner. These contacts facilitate exocytosis of neuronal lysosomes.

View Article and Find Full Text PDF

S100 calcium-binding protein A9 (S100A9, also known as calgranulin B) is expressed and secreted by myeloid cells under inflammatory conditions, and S100A9 can amplify inflammation. There is a large increase in S100A9 expression in the brains of patients with neurodegenerative diseases, such as Alzheimer's disease, and S100A9 has been suggested to contribute to neurodegeneration, but the mechanisms are unclear. Here we investigated the effects of extracellular recombinant S100A9 protein on microglia, neurons and synapses in primary rat brain neuronal-glial cell cultures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!