Spatially localized Kuzbanian required for specific activation of Notch during border cell migration.

Dev Biol

Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA.

Published: January 2007

The transmembrane receptor Notch is used repeatedly during development for a variety of essential functions. During Drosophila oogenesis, Notch activity is required first to specify particular follicle cell fates, then to promote the differentiation of all follicle cell types, to promote border cell migration, and then to form dorsal appendages, raising the question as to how Notch activity is spatially and temporally regulated. Here we show the Notch activity pattern during oogenesis. Notch activation was found in many follicle cells at stage 6 but then at stage 9 was restricted to migrating border cells, despite uniform expression of Delta. Expression of Kuzbanian (KUZ), a metalloproteinase that can activate Notch as well as cleave other substrates, is enriched in border cells at stage 9; and dominant-negative KUZ caused a strong border cell migration defect, without affecting expression of markers of border cell fate or follicle cell differentiation. Constitutively active Notch rescued the migration defect due to dominant-negative KUZ, and conditional alleles of Delta and Notch also exhibited border cell migration defects. Expression of two different reporters of Notch activity was lost upon expression of dominant-negative KUZ. Taken together these results show that Notch activation and KUZ expression are restricted to border cells at stage 9 of oogenesis and are required for migration, but not differentiation, of these cells. This represents a previously unrecognized mechanism for achieving spatial restriction of Notch signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2006.08.031DOI Listing

Publication Analysis

Top Keywords

border cell
20
cell migration
16
notch activity
16
notch
12
follicle cell
12
cells stage
12
border cells
12
dominant-negative kuz
12
border
8
cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!