A process was developed for production of a candidate vaccine antigen, recombinant C-terminal heavy chain fragment of the botulinum neurotoxin serotype E, rBoNTE(H(c)) in Pichia pastoris. P. pastoris strain GS115 was transformed with the rBoNTE(H(c)) gene inserted into pHILD4 Escherichia coli-P. pastoris shuttle plasmid. The clone was characterized for genetic stability, copy number, and BoNTE(H(c)) sequence. Expression of rBoNTE(H(c)) from the Mut(+) HIS4 clone was confirmed in the shake-flask, prior to developing a fed-batch fermentation process at 5 and 19 L scale. The fermentation process consists of a glycerol growth phase in batch and fed-batch mode using a defined medium followed by a glycerol/methanol transition phase for adaptation to growth on methanol and a methanol induction phase resulting in the production of rBoNTE(H(c)). Specific growth rate, ratio of growth to induction phase, and time of induction were critical for optimal rBoNTE(H(c)) production and minimal proteolytic degradation. A computer-controlled exponential growth model was used for process automation and off-gas analysis was used for process monitoring. The optimized process had an induction time of 9 h on methanol and produced up to 3 mg of rBoNTE(H(c)) per gram wet cell mass as determined by HPLC and Western blot analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2006.07.022 | DOI Listing |
Front Neurosci
December 2024
The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada.
This study aimed to evaluate different combinations of three dietary supplements for potential additive or synergistic effects in an Parkinson's Disease model. The complex and diverse processes leading to neurodegeneration in each patient with a neurodegenerative disorder cannot be effectively addressed by a single medication. Instead, various combinations of potentially neuroprotective agents targeting different disease mechanisms simultaneously may show improved additive or synergistic efficacy in slowing the disease progression and allowing the agents to be utilized at lower doses to minimize side effects.
View Article and Find Full Text PDFThis study aimed to elucidate the impact of advanced glycation end products (AGEs) and glucose shock on cardiomyocyte viability, gene expression, cardiac biomarkers, and cardiac contractility. Firstly, AGEs were generated in-house, and their concentration was confirmed using absorbance measurements. AC16 cardiomyocytes were then exposed to varying doses of AGEs, resulting in dose-dependent decreases in cell viability.
View Article and Find Full Text PDFEquine Vet J
January 2025
Setor de Patologia Veterinária, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
Background: In horses, systemic calcinosis is a rare syndrome characterised by muscle lesion associated with the mineralisation of large muscle groups or other organs, in the absence of an alternative cause for the calcification, such as toxic, enzootic or metabolic. Molecular and histopathological aspects of the disease are still poorly elucidated.
Objectives: To describe the epidemiological, pathological and molecular aspects of systemic calcinosis in a convenience sample of six horses submitted to necropsy in the Southern and Midwestern regions of Brazil.
J Anim Sci
January 2025
Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX USA.
The number of beef × dairy animals entering feedlots has increased, but the response of beef × dairy cattle to growth-promoting implants has not been well characterized. The objective of this study was to evaluate the effects of breed type and implant administration on live performance, carcass characteristics, sera metabolites, and immunohistochemical (IHC) outcomes. Forty-eight steers (average body weight [BW] = 417±22 kg) were sorted by breed into groups of predominantly Angus (B), black-hided beef × primarily Holstein (B×D), or Holstein (D), and half of the steers within each breed type were administered a steroidal implant.
View Article and Find Full Text PDFRSC Mechanochem
December 2024
Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability of ball milling as a recycling technique, the effect of milling parameters on small hydrocarbon and monomer yields has to be understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!