AI Article Synopsis

  • The polar tuberculoid type (TT) of leprosy shows high T cell reactivity to Mycobacterium leprae and is linked to the HLA-DR3 gene, but patients often exhibit low T cell responses to M. leprae.
  • A study focused on one TT leprosy patient revealed two distinct types of T cell clones: one that responded to M. tuberculosis and another that was specifically reactive to M. leprae but not the 65-kDa heat shock protein.
  • M. leprae-specific T cell clones were found to suppress the activity of the other T cell clones and even non-specific T responses, suggesting a complex immune interaction that could explain the low T cell responsiveness seen in TT le

Article Abstract

The polar tuberculoid type (TT) of leprosy, characterized by high T cell reactivity to Mycobacterium leprae, is associated with HLA-DR3. Surprisingly, DR3-restricted low T cell responsiveness to M. leprae was found in HLA-DR3-positive TT leprosy patients. This low responsiveness was specifically induced by M. leprae but not by M. tuberculosis and was seen only in patients and not in healthy controls. We studied this patient-specific, M. leprae-induced, DR3-restricted low T cell responsiveness in depth in one representative HLA-DR3-positive TT leprosy patient by using T cell clones. From this patient two types of T cell clones were obtained: one type was cross-reactive with M. tuberculosis and recognized an immunodominant epitope (amino acids 3 to 13) on the 65-kDa heat shock protein (hsp) the other type was M. leprae specific and reacted to a protein other than the 65-kDa one. To examine whether these M. leprae-specific T cell clones were responsible for the DR3-restricted low responsiveness to M. leprae, we tested them for the ability to suppress the proliferation of the DR3-restricted, 65-kDa, hsp-reactive clones. The DR3-restricted, M. leprae-specific T cells completely suppressed the proliferative responses of DR3-restricted, cross-reactive T cell clones to the 65-kDa hsp from the same patient as well as from other individuals. Also, DR3-restricted responses to an irrelevant Ag were suppressed by the M. leprae-specific T cell clones. However, no suppression of non-DR3-restricted T cell responses was seen. Although the mechanism must still be elucidated, this M. leprae-induced, DR3-restricted immunosuppression may at least partly explain the observed DR3-associated low T cell responsiveness in TT leprosy patients.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cell clones
20
dr3-restricted low
12
low cell
12
cell responsiveness
12
cell
11
leprae-specific cells
8
leprosy patient
8
cell responses
8
immunodominant epitope
8
65-kda hsp
8

Similar Publications

Introduction: Hematopoietic stem cell transplantation is a potentially curative intervention for a broad range of diseases. However, there is evidence that malignant or pre-malignant clones contained in the transplant can expand in the recipient and trigger donor-derived malignancies. This observation has gained much attention in the context of clonal hematopoiesis, a medical condition where significant amounts of healthy blood cells are derived from a small number of hematopoietic stem cell clones.

View Article and Find Full Text PDF

Background: Multiple Myeloma (MM) is the second most common hematological malignancy, characterized by the accumulation of monoclonal plasmocytes in the bone marrow. Despite advancements with proteasome inhibitors, immunomodulatory agents, and CD38-targeting antibodies, MM remains largely incurable due to resistant clones and frequent relapses. The success of the proteasome inhibitor bortezomib (BTZ) in MM treatment highlights the critical role of the ubiquitin-proteasome system (UPS) in this disease.

View Article and Find Full Text PDF

CAF-derived exosome-miR-3124-5p promotes malignant biological processes in NSCLC via the TOLLIP/TLR4-MyD88-NF-κB pathway.

Oncol Res

December 2024

Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.

Background: Lung cancer is a life-threatening disease that occurs worldwide, but is especially common in China. The crucial role of the tumour microenvironment (TME) in non-small cell lung cancer (NSCLC) has attracted recent attention. Cancer-associated fibroblasts (CAFs) are the main factors that contribute to the TME function, and CAF exosomes are closely linked to NSCLC.

View Article and Find Full Text PDF

The transcriptional regulatory factors binding to the polymorphic site C-1888T in the promoter region of the palate, lung, and nasal epithelium clone (PLUNC) gene were identified to investigate whether the C-1888T polymorphic site affects the transcriptional regulation and function of PLUNC gene. Three genotypes of C-1888T polymorphic locus were screened from established nasopharyngeal carcinoma (NPC) cells, and the mRNA expression levels of PLUNC gene in different genotypes were detected. The respective transcription factors that were more likely to bind with A or G in SNP were predicted by biological information and preliminarily verified in vitro by gel electrophoresis migration rate analysis.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: The Bu Shen Yi Sui capsule (BSYS), a modified version of the classical Chinese medicine formula Liu Wei Di Huang pill, has demonstrated therapeutic efficacy in the treatment of multiple sclerosis (MS). Nevertheless, the precise mechanism through which BSYS facilitates remyelination remains to be elucidated.

Aim Of The Study: This research investigates the role and potential mechanisms of BSYS-modified exosomes (exos) derived from bone marrow mesenchymal stem cells (BMSCs) in promoting remyelination in a cuprizone (CPZ)-induced demyelination model in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!