Nucleophilicities and carbon basicities of pyridines.

Chemistry

Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 (Haus F), 81377 München, Germany.

Published: February 2007

Rate and equilibrium constants for the reactions of pyridines with donor-substituted benzhydrylium ions have been determined spectrophotometrically. The correlation equation log k(20 degrees C)=s(N+E), in which s and N are nucleophile-specific parameters and E is an electrophile-specific parameter, has been used to determine the nucleophilicity parameters of various pyridines in CH(2)Cl(2) and aqueous solution and to compare them with N of other nucleophiles. It is found that the nucleophilic organocatalyst 4-(dimethylamino)pyridine (DMAP) and tertiary phosphanes have comparable nucleophilicities and carbon basicities despite widely differing Brønsted basicities. For that reason, these reactivity parameters are suggested as guidelines for the development of novel organocatalysts. The Marcus equation is employed for the determination of the intrinsic barriers of these reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200600941DOI Listing

Publication Analysis

Top Keywords

nucleophilicities carbon
8
carbon basicities
8
basicities pyridines
4
pyridines rate
4
rate equilibrium
4
equilibrium constants
4
constants reactions
4
reactions pyridines
4
pyridines donor-substituted
4
donor-substituted benzhydrylium
4

Similar Publications

CFH-synthon enables asymmetric radical difluoroalkylation for synthesis of chiral difluoromethylated amines.

Nat Commun

January 2025

Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

The difluoromethyl group is a crucial fluorinated moiety with distinctive biological properties, and the synthesis of chiral CF₂H-containing analogs has been recognized as a powerful strategy in drug design. To date, the most established method for accessing enantioenriched difluoromethyl compounds involves the enantioselective functionalization of nucleophilic and electrophilic CF₂H synthons. However, this approach is limited by lower reactivity and reduced enantioselectivity.

View Article and Find Full Text PDF

Treatment of multisubstituted NH-enesulfinamides with tosyl isocyanate (TsNCO) at room temperature results in the formation of α-tosylcarbamoyloxy -sulfenyl ketimines with high enantioselectivity. This process is believed to proceed via a vinylogous aza-Pummerer-type reaction pathway in which the sulfinyl oxygen atom in the enesulfinamides undergoes nucleophilic attack on tosyl isocyanate, triggering the subsequent transformations that enable the transfer of chirality from sulfur to carbon.

View Article and Find Full Text PDF

Mapping the molecular mechanism of zinc catalyzed Suzuki-Miyaura coupling reaction: a computational study.

Org Biomol Chem

January 2025

Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.

The Suzuki-Miyaura Coupling (SMC) reaction is a powerful method for forming carbon-carbon bonds in organic synthesis. Recent advancements in SMC reactions have introduced first-row transition metal catalysts, with zinc garnering significant interest due to its cost-effective and eco-friendly nature. Despite progress in experimental protocols, the mechanistic details of zinc-catalyzed SMC reactions are limited.

View Article and Find Full Text PDF

Computational Study on the Reaction Mechanism of 5-Enolpyruvylshikimate-3-phosphate Synthase from Nicotiana Tabacum.

ChemistryOpen

January 2025

Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.

5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the conversion of 5-enolpyruvate (PEP) and shikimic acid phosphate (S3P) to 5-enolpyruvylshikimic acid-3-phosphate (EPSP), releasing inorganic phosphate. This reaction is the sixth step of the shikimate pathway, which is a metabolic pathway used by microorganisms and plants for the biosynthesis of aromatic amino acids and folates but not in mammals. In the present study, the detailed reaction mechanism of EPSPS from Nicotiana tabacum (NtEPSPS) is revealed by quantum chemical calculations with the cluster approach.

View Article and Find Full Text PDF

In this work, a multicomponent polymerization (MCP) approach involving bipyrroles, sulfonyl azides, and diynes was developed to afford a library of poly(bipyrrole-sulfonylimide)s (PPSIs) in high yields and molecular weights, which were further modified to form unique sulfur dioxide (SO2) generators. Bipyrroles served as carbon-based nucleophiles to undergo Cu-catalyzed C-C coupling during the MCP. Upon post-MCP modification by transforming the bipyrrole unit to boron dipyrromethene (BODIPY) and the sulfonylimide moiety to sulfonamide, poly(BODIPY-sulfonamide)s (PBSAs) were obtained as potent anticancer therapeutic agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!