Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200602700DOI Listing

Publication Analysis

Top Keywords

ligand-free platinum
4
platinum nanoparticles
4
nanoparticles encapsulated
4
encapsulated hollow
4
hollow porous
4
porous carbon
4
carbon shell
4
shell highly
4
highly active
4
active heterogeneous
4

Similar Publications

We describe here the synthesis of ultrasmall Pt nanoparticles (NPs) obtained by a robust and reliable protocol using UV-Vis photoreduction of a platinum salt precursor, under continuous flow conditions. These ligand-free Pt NPs were rapidly dispersed onto a solid support or stabilized towards aggregation as a colloidal solution by the addition of an appropriate ligand in the reaction mixture. The proposed protocol exploits a microfluidic platform where the Pt precursor is photo-reduced to small Pt NPs (1.

View Article and Find Full Text PDF

Platinum-Iridium Alloy Nanoparticle Coatings Produced by Electrophoretic Deposition Reduce Impedance in 3D Neural Electrodes.

Chemphyschem

September 2024

Technical Chemistry I, University of Duisburg-Essen, Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstr. 7, 45141, Essen, Germany.

Platinum-based neural electrodes, frequently alloyed with Ir or W, are routinely used to treat neurological disorders. However, their performance is impaired by an increase in impedance that compromises long-term implant functionality. Though there are multiple coating techniques available to address this issue, electrode, and base material often exhibit a compositional mismatch, which impairs mechanical stability and may lead to toxicological side effects.

View Article and Find Full Text PDF

Chemically powered colloidal motors propelled by the self-phoretic effect have attracted widespread attention. However, the low motion efficiency and ion tolerance hinder their application in complex media. Herein, we report a scalable and simple method to synthesize 2.

View Article and Find Full Text PDF

Nanozymes are nanomaterials with biocatalytic properties under physiological conditions and are one class of artificial enzymes to overcome the high cost and low stability of natural enzymes. However, surface ligands on nanomaterials will decrease the catalytic activity of the nanozymes by blocking the active sites. To address this limitation, ligand-free PtAg nanoclusters (NCs) are synthesized and applied as nanozymes for various enzyme-mimicking reactions.

View Article and Find Full Text PDF

Ligand-free sub-nanometer metal clusters (MCs) of Pt, Ir, Rh, Au and Cu, are prepared here in neat water and used as extremely active (nM) antitumoral agents for HeLa and A2870 cells. The preparation just consists of adding the biocompatible polymer ethylene-vinyl alcohol (EVOH) to an aqueous solution of the corresponding metal salt, to give liters of a MC solution after filtration of the polymer. Since the MC solution is composed of just neat metal atoms and water, the intrinsic antitumoral activity of the different sub-nanometer metal clusters can now fairly be evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!