Metabolic effects of carbenoxolone in rat liver.

J Biochem Mol Toxicol

Laboratory of Liver Metabolism, Department of Biochemistry, University of Maringá, 87020900 Maringá, Brazil.

Published: November 2006

The action of carbenoxolone on hepatic energy metabolism was investigated in the perfused rat liver and isolated mitochondria. In perfused livers, carbenoxolone (200-300 microM) increased oxygen consumption, glucose production and glycolysis from endogenous glycogen. Gluconeogenesis from lactate or fructose, an energy-dependent process, was inhibited. This effect was already evident at a concentration of 25 microM. The cellular ATP levels and the adenine nucleotide content were decreased by carbenoxolone, whereas the AMP levels were increased. In isolated mitochondria, carbenoxolone stimulated state IV respiration and decreased the respiratory coefficient with the substrates beta-hydroxybutyrate and succinate. The ATPase of intact mitochondria was stimulated, the ATPase of uncoupled mitochondria was inhibited, and the ATPase of disrupted mitochondria was not altered by carbenoxolone. These results indicate that carbenoxolone acts as an uncoupler of oxidative phosphorylation and, possibly, as an inhibitor of the ATP/ADP exchange system. The inhibitory action of carbenoxolone on mitochondrial energy metabolism could be contributing to induce the mitochondrial permeability transition (MPT), a key phenomenon in apoptosis. The results of the present study can explain, partly at least, the in vivo hepatotoxic actions of carbenoxolone that were found in a previous clinical evaluation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbt.20139DOI Listing

Publication Analysis

Top Keywords

carbenoxolone
9
rat liver
8
action carbenoxolone
8
energy metabolism
8
isolated mitochondria
8
mitochondria
5
metabolic effects
4
effects carbenoxolone
4
carbenoxolone rat
4
liver action
4

Similar Publications

Background: Previous studies suggest the relationship between activation time (AT) and action potential duration (APD) in the heart is dependent on electrotonic coupling, but this has not been directly tested. This study assessed whether acute changes in electrical coupling, or other determinants of conduction or repolarization, modulate APD heterogeneity.

Methods And Results: Langendorff-perfused guinea pig hearts were epicardially paced and optically mapped after treatment with the gap junction uncoupler carbenoxolone, ephaptic uncoupler mannitol, ephaptic enhancer dextran 2MDa, sodium channel inhibitor flecainide, or rapid component of the delayed rectifier potassium channel inhibitor E4031.

View Article and Find Full Text PDF
Article Synopsis
  • N-methyl-D-aspartate receptors (NMDAR) and pannexin 1 (Panx1) channels play key roles in the development and maintenance of chronic neuropathic pain.
  • In a study with male rats, it was found that activation of NMDARs led to increased expression of certain proteins (pSrc and pPanx1), worsening pain responses in nerve-injured animals.
  • Blocking Panx1 or inhibiting Src effectively reduced pain responses, suggesting that targeting the NMDAR-Panx1 communication pathway could be a potential strategy for treating chronic pain.
View Article and Find Full Text PDF

Brain metastasis contributes substantially to the morbidity and mortality of various malignancies and is characterized by high chemoresistance. Intracellular communication between carcinoma cells and astrocytes through gap junctions, which are assembled mainly by the connexin 43 protein, has been shown to play a vital role in this process. However, effectively blocking the gap junctions between the two cell types remains extremely challenging because of insufficient drug delivery to the target site.

View Article and Find Full Text PDF

Aims: This study investigates the in vivo anticancer activity of carbenoxolone (CBX) and its role in fighting hepatocellular carcinoma (HCC) progression and alleviating resistance against doxorubicin (DOX). Moreover, the molecular mechanism of action of CBX is explored.

Methods: HCC was induced in Sprague Dawley rats via biweekly administration of thioacetamide (TAA) (200 mg/kg) intraperitoneally (i.

View Article and Find Full Text PDF

Highly specialized gap junctions play an important role in the interaction between endothelial (EC) and multipotent mesenchymal stromal cells (MSC). Inhibition of gap junctions with a specific inhibitor carbenoxolone attenuates the effects of the medium conditioned by MSC-EC co-culture on proliferation and migration of cultured EC. In conditioned medium from co-culture, the levels of angiogenic mediators (VEGF-A, FGF-2, MCP-1, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!