Disruption of the alveolar septal barrier leads to acute lung injury, patchy alveolar flooding, and hypoxemia. Although calcium entry into endothelial cells is critical for loss of barrier integrity, the cation channels involved in this process have not been identified. We hypothesized that activation of the vanilloid transient receptor potential channel TRPV4 disrupts the alveolar septal barrier. Expression of TRPV4 was confirmed via immunohistochemistry in the alveolar septal wall in human, rat, and mouse lung. In isolated rat lung, the TRPV4 activators 4alpha-phorbol-12,13-didecanoate and 5,6- or 14,15-epoxyeicosatrienoic acid, as well as thapsigargin, a known activator of calcium entry via store-operated channels, all increased lung endothelial permeability as assessed by measurement of the filtration coefficient, in a dose- and calcium-entry dependent manner. The TRPV antagonist ruthenium red blocked the permeability response to the TRPV4 agonists, but not to thapsigargin. Light and electron microscopy of rat and mouse lung revealed that TRPV4 agonists preferentially produced blebs or breaks in the endothelial and epithelial layers of the alveolar septal wall, whereas thapsigargin disrupted interendothelial junctions in extraalveolar vessels. The permeability response to 4alpha-phorbol-12,13-didecanoate was absent in TRPV4(-/-) mice, whereas the response to thapsigargin remained unchanged. Collectively, these findings implicate TRPV4 in disruption of the alveolar septal barrier and suggest its participation in the pathogenesis of acute lung injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562953PMC
http://dx.doi.org/10.1161/01.RES.0000247065.11756.19DOI Listing

Publication Analysis

Top Keywords

alveolar septal
24
septal barrier
16
disruption alveolar
12
acute lung
12
lung injury
12
transient receptor
8
receptor potential
8
calcium entry
8
septal wall
8
rat mouse
8

Similar Publications

Massive Carbon Black Inhalation.

J Community Hosp Intern Med Perspect

January 2025

Departments of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.

Carbon black is the general term for a powdery commercial form of carbon. It can cause adverse health effects after inhalation, ingestion, or dermal contact. Exposure to carbon black particles can have adverse effects on the respiratory system; this exposure usually occurs when people inhale contaminated air in the workplace.

View Article and Find Full Text PDF

Multifaceted pulmonary manifestations of amyloidosis: state-of-the-art update.

Expert Rev Respir Med

January 2025

Division of Pulmonary & Critical Care Medicine, Mayo Clinic, Rochester, MN, USA.

Introduction: Amyloidosis, a polymeric deposition disease classified according to protein subtype, may have varied pulmonary manifestations. Its anatomic-radiologic phenotypes include nodular, cystic, alveolar-septal, and tracheobronchial forms. Clinical presentation may range from asymptomatic parenchymal nodules to respiratory failure from diffuse parenchymal infiltration or diaphragmatic deposition.

View Article and Find Full Text PDF

Objectives: The aims of this study were to describe the frequency of pleuropulmonary computed tomography (CT) findings in patients with IgG4-related disease (IgG4-RD) and to compare clinical and laboratory characteristics between patients with and without pleuropulmonary involvement in chest CT.

Methods: This is a study conducted within the IgG4-RD study group of the Argentine Society of Rheumatology (GESAR IgG4) cohort of patients with IgG4-RD. Member centers of the group were requested to submit pulmonary CT scans of the patients.

View Article and Find Full Text PDF

A Combined Extract from and Mitigates PM-Induced Respiratory Damage by NF-κB/TGF-β1 Pathway.

Antioxidants (Basel)

December 2024

Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea.

This research evaluated the protective role of a combined extract of and (DBZO) against respiratory dysfunction caused by particulate matter (PM) exposure in BALB/c mice. The bioactive compounds identified in the DBZO are catechin, astragalin, 6-gingerol, 8-gingerol, and 6-shogaol. DBZO ameliorated cell viability and reactive oxygen species (ROS) production in PM-stimulated A549 and RPMI 2650 cells.

View Article and Find Full Text PDF

Objective: To investigate the protective effect of lycopene on lung oxidative damage induced by atmospheric fine particulate matter(PM_(2.5)) in rats.

Methods: Sixty 7-week-old male Sprague-Dawley rats were randomly divided into six groups: normal control group, PM_(2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!