The hypogonadal (hpg) mouse is an excellent animal model in which to investigate the mechanism of action of estrogens on spermatogenesis because it has arrested reproductive development without the need for surgical, endocrine, pharmacological or immunological intervention. Hpg mice are hypogonadotrophic and fail to show normal postnatal testicular development due to the congenital inability to synthesize gonadotropin-releasing hormone in the hypothalamus. The hpg testis remains responsive to gonadotropins and androgens in that fertility can be induced by treatment with these hormones. Surprisingly, chronic treatment with low concentrations of estradiol alone induces qualitatively normal spermatogenesis. The induction of testicular development by estradiol in hpg mice is accompanied by a paradoxical increase in FSH production. The actions of estradiol in hpg mice appear to be via genomic estrogen receptors, as concurrent treatment with estrogen-receptor antagonist ICI182,780 completely blocks these pituitary and testis responses. Concurrent treatment with the androgen receptor antagonist bicalutamide does not affect the estradiol-induced increase in pituitary FSH content, but markedly attenuates the estradiol-induced increase in testicular weight. Western blot analyses and immunohistochemistry provide evidence for estrogen-receptor alpha and beta expression in both pituitary gland and testis of the hpg mouse. Estradiol may therefore exert direct actions within the testes and/or indirect neuroendocrine actions via the release of FSH or other hormones from the pituitary gland, but its actions are dependent upon the availability of low levels of androgen within the testis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14647270500509103 | DOI Listing |
Mol Cell Endocrinol
January 2025
Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus. Electronic address:
Background And Aims: Puberty is a crucial developmental stage marked by the transition from childhood to adulthood, organized by complex hormonal signaling within the neuroendocrine system. The hypothalamus, a central region in this system, regulates pubertal functions through the hypothalamic-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons, essential in puberty control, release GnRH in a pulsatile manner, initiating the production of sex hormones.
View Article and Find Full Text PDFBone Res
January 2025
Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China.
Reproductive hormones associated with the hypothalamic-pituitary-gonadal (HPG) axis are closely linked to bone homeostasis. In this study, we demonstrate that Gonadotropin inhibitory hormone (GnIH, one of the key reproductive hormones upstream of the HPG axis) plays an indispensable role in regulating bone homeostasis and maintaining bone mass. We find that deficiency of GnIH or its receptor Gpr147 leads to a significant reduction in bone mineral density (BMD) in mice primarily by enhancement of osteoclast activation in vivo and in vitro.
View Article and Find Full Text PDFACS Nano
December 2024
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
Environ Res
January 2025
Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco. Electronic address:
Chronic exposure to low doses of mercury, one of the ten most dangerous chemicals for public health, has been associated with problems in fertility. Our study aims to investigate the effect of chronic exposure to a low dose of mercury chloride on the reproductive health of female mice and maternal behavior throughout generations using the maternal lineage for the first and second generations, either by direct exposure with F1 and F2 or via the germ cells with F2'. To our knowledge, these modalities have never been addressed before.
View Article and Find Full Text PDFJ Environ Sci (China)
May 2025
College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China. Electronic address:
17β-Trenbolone (17-TB) is well documented as an environmental endocrine disruptor in aquatic biological studies, but its effects on mammals remain poorly understood. Furthermore, 17-TB acts as a hormone with properties similar to testosterone, and the consequences of juvenile exposure on adult social behavior remain uncertain. Bisphenol A (BPA) acts as an estrogen-like hormone, compared to 17-TB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!