Poly-L-aspartic acid (poly-L-Asp) protects rats against gentamicin (GM)-induced nephrotoxicity (functional and pathological changes) and early cortical alterations (phospholipidosis and increase in cell turnover) without decreasing, but actually increasing, the renal accumulation of the drug. We suggested that this protection occurs through the complexation of GM by poly-L-Asp, after their pinocytosis and accumulation in the lysosomes of the renal cortex (Kishore et al., J. Pharmacol. Exp. Ther. 867-874, 1990). Here we examine further our proposal by comparatively assessing poly-L-Asp (as provided by the Sigma Chemical Co., St. Louis, MO; MW 9-11,000), with two other polyanionic peptides, viz, poly-L-glutamic (poly-L-Glu; MW 14,300) and poly-D-glutamic (poly-D-Glu; MW 20,000) acids obtained from the same supplier. In vitro, all three polyanions showed a similar capacity to bind GM, to displace it from anionic phospholipids at acid pH and thereby to decrease the inhibitory potency of GM toward lysosomal phospholipase A1. In vivo, however, only poly-L-Asp and poly-D-Glu were able to prevent the development of GM-induced renal lysosomal phospholipidosis as assessed by key biochemical criteria (increase in lipid phosphorus and decrease of acid sphingomyelinase activity) and by examination of the lysosomal content in the electron microscope (accumulation of myeloid bodies). Based on these criteria, poly-L-Glu completely failed to protect. In vitro, poly-L-Glu was 13- to 17-fold more susceptible to hydrolysis by liver lysosomal extracts at pH 5.4 after 48 hr incubation, as compared to poly-L-Asp and poly-D-Glu, respectively. Assuming that all three polyanions tested are transported and accumulated in lysosomes of renal cortex to the same extent and that their respective rates of hydrolysis therein compare to that measured in vitro, these results suggest that stability of polyanions in lysosomes is an essential requisite for protection against GM-induced phospholipidosis and thus strengthens our earlier proposal that the site of action of poly-L-Asp must be in lysosomes. Although protecting from phospholipidosis, poly-D-Glu, however, caused a so far undescribed lysosomal storage disorder consisting of the accumulation of osmiophilic, nonlamellar material. This study, therefore, also demonstrates that not all polyanions resistant to lysosomal enzymes can be used as nephroprotectants, inasmuch as these, as is the case for poly-D-Glu, may cause renal alterations on their own.
Download full-text PDF |
Source |
---|
FASEB J
January 2025
Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan.
Various tubular diseases in patients with multiple myeloma (MM) are caused by monoclonal immunoglobulin light chains (LCs). However, the physicochemical characteristics of the disease-causing LCs contributing to the onset of MM-associated tubular diseases remain unclear. We herein report a rare case of MM-associated combined tubulopathies: non-crystalline light chain proximal tubulopathy (LCPT) and crystalline light chain cast nephropathy (LCCN).
View Article and Find Full Text PDFLife (Basel)
November 2024
Rare, Degenerative and Inflammatory Ocular Diseases Unit, Department of Sense Organs, La Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy.
Fabry disease (FD) is a rare X-linked lysosomal storage disorder with a broad spectrum of clinical manifestations, including severe complications, such as end-stage renal disease, hypertrophic cardiomyopathy, and cerebrovascular disease. Enzyme replacement therapy (ERT), when initiated early, has been shown to reduce the incidence of severe events and slow disease progression. In the classic form, characterized by the absence of α-galactosidase A (α-Gal A) enzyme activity, diagnosis is straightforward.
View Article and Find Full Text PDFNat Rev Nephrol
January 2025
Institute of Anatomy, University of Zurich, Zurich, Switzerland.
The kidney proximal tubule reabsorbs and degrades filtered plasma proteins to reclaim valuable nutrients and maintain body homeostasis. Defects in this process result in proteinuria, one of the most frequently used biomarkers of kidney disease. Filtered proteins enter proximal tubules via receptor-mediated endocytosis and are processed within a highly developed apical endo-lysosomal system (ELS).
View Article and Find Full Text PDFTransl Res
January 2025
Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China. Electronic address:
Renal ischemia-reperfusion injury (IRI) is a common clinical condition that currently lacks effective treatment options. Inhibitors targeting the sodium-glucose co-transporter-2 (SGLT-2), recognized for their role in managing hyperglycemia, have demonstrated efficacy in enhancing the health outcomes for diabetic patients grappling with chronic kidney disease. Nevertheless, the precise impact of SGLT-2 inhibitors on renal ischemia-reperfusion injury (IRI) and the corresponding transcriptomic alterations remain to be elucidated.
View Article and Find Full Text PDFHum Immunol
January 2025
Department of Urology, Jiaxing Second Hospital, Jiaxing 314000, China. Electronic address:
Previous studies have revealed the essential role of lysosomes in human diseases, including cancer. However, there is a lack of in-depth systematic research on its function in kidney renal clear cell carcinoma (KIRC). In this project, we collected the public dataset of KIRC and selected lysosomal genes tightly linked with survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!