Polyketone polymer -[-CO-CH(2)-CH(2)-](n)-, obtained by copolymerization of ethene and carbon monoxide, is utilized for immobilization of three different enzymes, one peroxidase from horseradish (HRP) and two amine oxidases, from bovine serum (BSAO) and lentil seedlings (LSAO). The easy immobilization procedure is carried out in diluted buffer, at pH 7.0 and 3 degrees C, gently mixing the proteins with the polymer. No bifunctional reagents and spacer arms are required for the immobilization, which occurs exclusively via a large number of hydrogen bonds between the carbonyl groups of the polymer and the -NH groups of the polypeptidic chain. Experiments demonstrate a high linking capacity of polymer for BSAO and an extraordinary strong linkage for LSAO. Moreover, activity measurements demonstrate that immobilized LSAO totally retains the catalytic characteristics of the free enzyme, where only a limited increase of K(M) value is observed. Finally, the HRP-activated polymer is successfully used as active packed bed of an enzymatic reactor for continuous flow conversion and flow injection analysis of hydrogen peroxide containing solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2006.08.011 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
We applied a classifier method to predict palladium catalysts for the formation of nonalternating polyketones via the copolymerization of CO and ethylene; current examples are limited to using phosphine sulfonate and diphosphazane monoxide supporting ligands. With the reported workflow, we discovered two new classes of palladium complexes capable of achieving the synthesis of nonalternating polyketones with a lower CO content than those made by known palladium catalysts. Our results show that we doubled the number of classes of palladium compounds that can catalyze the formation of this type of polymer.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore, 117575, Singapore.
The modification of thermoplastic polymers is frequently impeded by the inherent contradiction between their toughness and strength. In this study, an effective strategy to significantly improve the mechanical properties of ductile polymers by simply adding a complimentary rigid polymer is introduced. This work uses a semi-crystalline polymer aliphatic polyketone (POK) as the matrix material and a small quantity of polymethyl methacrylate (PMMA) as the rigid polymer, through establishing molecular chain entanglements at the interface to produce POK/PMMA blends with exceptional mechanical property.
View Article and Find Full Text PDFPolymers (Basel)
July 2024
Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino5 155, 30172 Venice, Italy.
Today, polymeric drug delivery systems (DDS) appear as an interesting solution against bacterial resistance, having great advantages such as low toxicity, biocompatibility, and biodegradability. In this work, two polyketones (PK) have been post-functionalized with sodium taurinate (PKT) or potassium sulfanilate (PKSK) and employed as carriers for Vancomycin against bacterial infections. Modified PKs were easily prepared by the Paal-Knorr reaction and loaded with Vancomycin at a variable pH.
View Article and Find Full Text PDFJ Am Chem Soc
July 2024
Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
Polymers possessing saturated fused polycycles in the main chain repeating unit have been underexplored despite their potential utility based on their expected properties such as high rigidity, chemical resistance, transparency, and thermal stability. In this regard, herein, we developed a radical stitching polymerization of styryl vinyl ketones for the synthesis of polyketones possessing saturated fused bicyclic repeating units. The polymerization proceeded smoothly with a high degree of stitching efficiency in a chain-growth manner under free radical conditions.
View Article and Find Full Text PDFJ Am Chem Soc
May 2024
Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!