Hepatitis C virus (HCV) infection causes acute and chronic liver disease often leading to liver cirrhosis and hepatocellular carcinoma. Numerous studies have shown that despite induction of virus specific immunity, a curative response is often not attained; this has led to the hypothesis that HCV genes modulate immunity, thereby enabling chronic infections. This study examined the effects on immune-mediated liver injury in transgenic mice expressing core protein throughout the body and bone marrow chimeras expressing core protein in either the lymphoid compartment or liver parenchyma. Presence of core protein in the liver parenchyma but not in lymphoid cells protects from autoimmune hepatitis induced by mitogen concanavalin A (ConA). Consistent with this observation, core transgenic hepatocytes are relatively resistant to death induced by anti-Fas antibody and tumor necrosis factor alpha (TNFalpha). This protective effect is associated with preferential activation of signal transducer and activation of transcription factor 3 (STAT3) versus STAT1 in livers of ConA-injected animals. In agreement with this effect of core protein on the Janus kinase (JAK)-STAT signaling pathway, transgenic mice accelerate liver regeneration after partial hepatectomy but are not protected from hepatocyte death. In conclusion, HCV core inhibits STAT1 and stimulates STAT3 activation, which protects infected hepatocytes from attack by the cell-mediated immune system and promotes their proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hep.21360 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706.
Given the influence of cognitive abilities on life outcomes, there is inherent value in identifying genes involved in controlling learning and memory. Further, cognitive dysfunction is a core feature of many neuropsychiatric disorders. Here, we use a combinatory in silico approach to identify human gene targets that will have an especially high likelihood of individually and directly impacting cognition.
View Article and Find Full Text PDFClin Transl Med
January 2025
Vascular Research Laboratory, IIS-Fundación Jiménez Díaz, Madrid, Spain.
Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids and leukocytes within the arterial wall. By studying the aortic transcriptome of atherosclerosis-prone apolipoprotein E (ApoE) mice, we aimed to identify novel players in the progression of atherosclerosis.
Methods: RNA-Seq analysis was performed on aortas from ApoE and wild-type mice.
Arch Insect Biochem Physiol
January 2025
Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India.
RNA interference (RNAi) technology is widely used in gene functional studies and has been shown to be a promising next generation alternative for insect pest management. To understand the efficiency of RNAi machinery in Leucinodes orbonalis (L. orbonalis) Guenee, a destructive pest of eggplant, core RNAi pathway genes Argonaute-2, Dicer-2, Loquacious, and Sid-1 were mined from the transcriptome and characterized.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China.
Nitrogen (N) is a crucial macronutrient for plant growth, with nitrate as a primary inorganic N source for most plants. Beyond its role as a nutrient, nitrate also functions as a signalling molecule, influencing plant morphogenetic development. While nitrate utilization and signalling mechanisms have been extensively studied in model plants, the origin, evolution, and diversification of core components in nitrate uptake, assimilation, and signalling remain largely unexplored.
View Article and Find Full Text PDFFront Physiol
January 2025
Human Physiology Research Unit, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada.
Introduction: The fraction of drug circulating in the blood that is not bound to plasma proteins ( ) is considered pharmacologically active since it readily binds to its receptor. evidence suggests that changes in temperature and pH affect the affinity of drug binding to plasma proteins, resulting in changes in . In light of the well-established effects of exercise on body temperature and blood pH, we investigated whether an increase in blood temperature and decrease in pH facilitated through passive heating and exercise translated to a change in the of caffeine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!