Evolution of alternative transcriptional circuits with identical logic.

Nature

Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, California 94143-2200, USA.

Published: September 2006

AI Article Synopsis

Article Abstract

Evolution of gene regulation is an important contributor to the variety of life. Here, we analyse the evolution of a combinatorial transcriptional circuit composed of sequence-specific DNA-binding proteins that are conserved among all eukaryotes. This circuit regulates mating in the ascomycete yeast lineage. We first identify a group of mating genes that was transcriptionally regulated by an activator in a fungal ancestor, but is now transcriptionally regulated by a repressor in modern bakers' yeast. Despite this change in regulatory mechanism, the logical output of the overall circuit remains the same. By examining the regulation of mating in modern yeasts that are related to different extents, we deduce specific, sequential changes in both cis- and trans-regulatory elements that constitute the transition from positive to negative regulation. These changes indicate specific mechanisms by which fitness barriers were traversed during the transition.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature05099DOI Listing

Publication Analysis

Top Keywords

transcriptionally regulated
8
evolution alternative
4
alternative transcriptional
4
transcriptional circuits
4
circuits identical
4
identical logic
4
logic evolution
4
evolution gene
4
gene regulation
4
regulation contributor
4

Similar Publications

Aims: Chemoresistance results in poor outcomes of patients with gastric cancer (GC). This study aims to identify oxaliplatin resistance-related cell subpopulations in the tumor microenvironment (TME) and decipher the involved molecular mechanisms.

Methods: Through single-cell RNA sequencing, a unique ONECUT2TFPI GC cell subset was identified in the oxaliplatin-resistant TME.

View Article and Find Full Text PDF

Cell lines and patient-derived xenografts are essential to cancer research; however, the results derived from such models often lack clinical translatability, as they do not fully recapitulate the complex cancer biology. Identifying preclinical models that sufficiently resemble the biological characteristics of clinical tumors across different cancers is critically important. Here, we developed MOBER, Multi-Origin Batch Effect Remover method, to simultaneously extract biologically meaningful embeddings while removing confounder information.

View Article and Find Full Text PDF

Transcription factors induce differential splicing of duplicated ribosomal protein genes during meiosis.

Nucleic Acids Res

January 2025

Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.

In baker's yeast, genes encoding ribosomal proteins often exist as duplicate pairs, typically with one 'major' paralog highly expressed and a 'minor' less expressed paralog that undergoes controlled expression through reduced splicing efficiency. In this study, we investigate the regulatory mechanisms controlling splicing of the minor paralog of the uS4 protein gene (RPS9A), demonstrating that its splicing is repressed during vegetative growth but upregulated during meiosis. This differential splicing of RPS9A is mediated by two transcription factors, Rim101 and Taf14.

View Article and Find Full Text PDF

Aim: Effective control of mesenchymal stem cell (MSC) differentiation towards osteogenic lineages is fundamental for bone regeneration. This study elucidates the regulatory role of methyltransferase like 7A (METTL7A) in the osteogenic differentiation of MSCs.

Methodology: Alkaline phosphatase staining, Alizarin Red S staining, western blotting, and in vivo studies were conducted to determine the effects of METTL7A depletion or overexpression on the osteogenic differentiation of various types of MSCs.

View Article and Find Full Text PDF

FOXG1 promotes osteogenesis of bone marrow-derived mesenchymal stem cells by activating autophagy through regulating USP14.

Commun Biol

January 2025

Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.

The osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) is key for bone formation, and its imbalance leads to osteoporosis. Forkhead Box Protein G1 (FOXG1) is associated with osteogenesis, however, the effect of FOXG1 on osteogenesis of BMSCs and ovariectomy (OVX)-induced bone loss is unknown. In our study, FOXG1 expression in BMSCs increases after osteogenic induction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!