Background: Islet transplantation offers the potential to improve glycemic control in a subgroup of patients with type 1 diabetes mellitus who are disabled by refractory hypoglycemia. We conducted an international, multicenter trial to explore the feasibility and reproducibility of islet transplantation with the use of a single common protocol (the Edmonton protocol).

Methods: We enrolled 36 subjects with type 1 diabetes mellitus, who underwent islet transplantation at nine international sites. Islets were prepared from pancreases of deceased donors and were transplanted within 2 hours after purification, without culture. The primary end point was defined as insulin independence with adequate glycemic control 1 year after the final transplantation.

Results: Of the 36 subjects, 16 (44%) met the primary end point, 10 (28%) had partial function, and 10 (28%) had complete graft loss 1 year after the final transplantation. A total of 21 subjects (58%) attained insulin independence with good glycemic control at any point throughout the trial. Of these subjects, 16 (76%) required insulin again at 2 years; 5 of the 16 subjects who reached the primary end point (31%) remained insulin-independent at 2 years.

Conclusions: Islet transplantation with the use of the Edmonton protocol can successfully restore long-term endogenous insulin production and glycemic stability in subjects with type 1 diabetes mellitus and unstable control, but insulin independence is usually not sustainable. Persistent islet function even without insulin independence provides both protection from severe hypoglycemia and improved levels of glycated hemoglobin. (ClinicalTrials.gov number, NCT00014911 [ClinicalTrials.gov].).

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa061267DOI Listing

Publication Analysis

Top Keywords

islet transplantation
20
insulin independence
16
glycemic control
12
type diabetes
12
diabetes mellitus
12
primary point
12
edmonton protocol
8
subjects type
8
year final
8
islet
6

Similar Publications

Controlled Nutrient Delivery to Pancreatic Islets Using Polydopamine-Coated Mesoporous Silica Nanoparticles.

Nano Lett

January 2025

Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States.

In this study, we designed a nanoscale platform for sustained amino acid delivery to support transplanted pancreatic islets. The platform features mesoporous silica nanoparticles (MSNPs) loaded with glutamine (G), an essential amino acid required for islet survival and function, and coated with polydopamine (PD). We investigated various PD concentrations (0.

View Article and Find Full Text PDF

Mesenchymal stem cell conditioned medium improves hypoxic injury to protect islet graft function.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: Islet transplantation is one of the most promising curative methods for type 1 diabetes mellitus (T1DM), but early hypoxic death of the graft post-transplantation impedes successful treatment. To improve the efficacy of islet transplantation and enhance islet cell resistance to hypoxia, reducing hypoxic injury before revascularization is crucial. Mesenchymal stem cells (MSCs) are known to regulate immune responses and protect against hypoxic damage through paracrine mechanisms.

View Article and Find Full Text PDF

Herein, we characterized the percentage of tacrolimus to the combined sirolimus and tacrolimus trough levels (tacrolimus %) observed during islet transplant-associated immune suppression therapy with post-transplant skin cancer. Although trough levels of tacrolimus and sirolimus were not different ( = 0.79, 0.

View Article and Find Full Text PDF

Type 1 diabetes mellitus is an autoimmune condition characterized by the destruction of pancreatic β-cells, necessitating insulin therapy to prevent life-threatening complications such as diabetic ketoacidosis. Despite advancements in glucose monitoring and pharmacological treatments, managing this disease remains challenging, often leading to long-term complications and psychological burdens, including diabetes distress. Advanced treatment options, such as whole-pancreas transplantation and islet transplantation, aim to restore insulin production and improve glucose control in selected patients with diabetes.

View Article and Find Full Text PDF

Biotechnology Revolution Shaping the Future of Diabetes Management.

Biomolecules

December 2024

Discipline of Microbiology, Department XIV Microbiology, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania.

Diabetes mellitus (DM) has a millennia-long history, with early references dating back to ancient Egypt and India. However, it was not until the 20th century that the connection between diabetes and insulin was fully understood. The sequencing of insulin in the 1950s initiated the convergence of biotechnology and diabetes management, leading to the development of recombinant human insulin in 1982.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!