We investigated the compartmentalized intrapulmonary pharmacokinetics of amphotericin B and its lipid formulations in healthy rabbits. Cohorts of three to seven noninfected, catheterized rabbits received 1 mg of amphotericin B deoxycholate (DAMB) per kg of body weight or 5 mg of either amphotericin B colloidal dispersion (ABCD), amphotericin B lipid complex (ABLC), or liposomal amphotericin B (LAMB) per kg once daily for a total of 8 days. Following sparse serial plasma sampling, rabbits were sacrificed 24 h after the last dose, and epithelial lining fluid (ELF), pulmonary alveolar macrophages (PAM), and lung tissue were obtained. Pharmacokinetic parameters in plasma were derived by model-independent techniques, and concentrations in ELF and PAM were calculated based on the urea dilution method and macrophage cell volume, respectively. Mean amphotericin B concentrations +/- standard deviations (SD) in lung tissue and PAM were highest in ABLC-treated animals, exceeding concurrent plasma levels by 70- and 375-fold, respectively (in lung tissue, 16.24 +/- 1.62 versus 2.71 +/- 1.22, 6.29 +/- 1.17, and 6.32 +/- 0.57 microg/g for DAMB-, ABCD-, and LAMB-treated animals, respectively [P = 0.0029]; in PAM, 89.1 +/- 37.0 versus 8.92 +/- 2.89, 5.43 +/- 1.75, and 7.52 +/- 2.50 mug/ml for DAMB-, ABCD-, and LAMB-treated animals, respectively [P = 0.0246]). By comparison, drug concentrations in ELF were much lower than those achieved in lung tissue and PAM. Among the different cohorts, the highest ELF concentrations were found in LAMB-treated animals (2.28 +/- 1.43 versus 0.44 +/- 0.13, 0.68 +/- 0.27, and 0.90 +/- 0.28 microg/ml in DAMB-, ABCD-, and ABLC-treated animals, respectively [P = 0.0070]). In conclusion, amphotericin B and its lipid formulations displayed strikingly different patterns of disposition in lungs 24 h after dosing. Whereas the disposition of ABCD was overall not fundamentally different from that of DAMB, ABLC showed prominent accumulation in lung tissue and PAM, while LAMB achieved the highest concentrations in ELF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1610093PMC
http://dx.doi.org/10.1128/AAC.00241-06DOI Listing

Publication Analysis

Top Keywords

lung tissue
20
amphotericin lipid
16
+/-
13
lipid formulations
12
concentrations elf
12
tissue pam
12
damb- abcd-
12
lamb-treated animals
12
compartmentalized intrapulmonary
8
intrapulmonary pharmacokinetics
8

Similar Publications

Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.

View Article and Find Full Text PDF

Currently, the barrier to successful lung transplantation is ischemia and reperfusion injury, which can lead to the development of bronchiolitis obliterans. Paclitaxel and methotrexate are drugs known to inhibit cell proliferation and have anti-inflammatory effects, and the association of these drugs with cholesterol-rich nanoparticles has been shown to be beneficial in the treatment of other transplanted organs. Thirty-three male Sprague Dawley rats were divided into 3 groups: Basal group, no intervention; Control group, received only nanoparticles; Drug group, paclitaxel and methotrexate treatment.

View Article and Find Full Text PDF

The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.

View Article and Find Full Text PDF

Multifaceted Immunomodulatory Nanocomplexes Target Neutrophilic-ROS Inflammation in Acute Lung Injury.

Adv Sci (Weinh)

December 2024

Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.

The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.

View Article and Find Full Text PDF

Lung cancer, as a serious threat to human health and life, necessitating urgent treatment and intervention. In this study, we prepared hyaluronic acid (HA)-targeted topotecan liposomes for site-specific delivery to tumor cells. The encapsulation efficiency, stability, chemical structure, and morphology of HA-targeted topotecan liposomes were studied, and the release properties, cellular uptake capacity, and therapeutic efficacy of topotecan were further investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!