Dorsal posterior parietal cortex (PPC) has been implicated through single-unit recordings, neuroimaging data, and studies of brain-damaged humans in the spatial guidance of reaching and pointing movements. The present study examines the causal effect of single-pulse transcranial magnetic stimulation (TMS) over the left and right dorsal posterior parietal cortex during a memory-guided "reach-to-touch" movement task in six human subjects. Stimulation of the left parietal hemisphere significantly increased endpoint variability, independent of visual field, with no horizontal bias. In contrast, right parietal stimulation did not increase variability, but instead produced a significantly systematic leftward directional shift in pointing (contralateral to stimulation site) in both visual fields. Furthermore, the same lateralized pattern persisted with left-hand movement, suggesting that these aspects of parietal control of pointing movements are spatially fixed. To test whether the right parietal TMS shift occurs in visual or motor coordinates, we trained subjects to point correctly to optically reversed peripheral targets, viewed through a left-right Dove reversing prism. After prism adaptation, the horizontal pointing direction for a given visual target reversed, but the direction of shift during right parietal TMS did not reverse. Taken together, these data suggest that induction of a focal current reveals a hemispheric asymmetry in the early stages of the putative spatial processing in PPC. These results also suggest that a brief TMS pulse modifies the output of the right PPC in motor coordinates downstream from the adapted visuomotor reversal, rather than modifying the upstream visual coordinates of the memory representation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00411.2006 | DOI Listing |
PLoS One
January 2025
Human Neuroscience Group and Centre for Neuroscience and Neuromodulation, Institute for Medical Research, University of Belgrade, Belgrade, Serbia.
Associative memory (AM) plays a crucial role in our ability to link disparate elements of our experiences, yet it is especially vulnerable to age-related decline and pathological conditions. Non-invasive brain stimulation (NIBS), particularly transcranial direct current stimulation (tDCS), has been investigated as a potential intervention to enhance cognitive functions, including AM. Previous tDCS studies yielded inconsistent results, often due to variations in stimulation sites and protocols.
View Article and Find Full Text PDFPost-stroke aphasia is a network disorder characterized by language impairments and aberrant network activation. While patients with post-stroke aphasia recover over time, the dynamics of the underlying changes in the brain remain elusive. Neuroimaging work demonstrated that language recovery is a heterogeneous process, characterized by varying activation levels in several regions of the left-hemispheric language network and the domain-general bilateral multiple-demand network.
View Article and Find Full Text PDFFront Aging Neurosci
January 2025
Department of Radiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
Background And Purpose: Asymptomatic carotid stenosis (ACS) is an independent risk factor for ischemic stroke and vascular cognitive impairment, affecting cognitive function across multiple domains. This study aimed to explore differences in static and dynamic intrinsic functional connectivity and temporal dynamics between patients with ACS and those without carotid stenosis.
Methods: We recruited 30 patients with unilateral moderate-to-severe (stenosis ≥ 50%) ACS and 30 demographically-matched healthy controls.
Front Public Health
January 2025
Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, Republic of Korea.
Objective: This study assessed the effects of transcranial direct current stimulation (tDCS) on cue reactivity and craving for game-related cues using event-related potentials (ERPs) in internet gaming disorder (IGD) patients.
Methods: At baseline, a series of game-related and neutral pictures were shown to both IGD and healthy controls (HCs) while ERPs were recorded. Late positive potentials (LPP) were used to investigate cue reactivity.
iScience
January 2025
Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China.
Learned action sequences are suggested to be organized hierarchically, but how the various hierarchical levels are processed by different cortical regions remains largely unknown. By training monkeys to perform heterogeneous saccade sequences, we investigated the role of the dorsolateral prefrontal cortex (DLPFC) and the lateral intraparietal cortex (LIP) in sequence planning and execution. The electrophysiological recording revealed that sequence-level initiation information was mostly signaled by DLPFC neurons, whereas subsequence-level transition was largely encoded by LIP neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!