Hearing deficits have often been associated with loss of or damage to receptor hair cells and/or degeneration of spiral ganglion cells. There are, however, some physiological abnormalities that are not reliably attributed to loss of these cells. The afferent synapse between radial fibers of spiral ganglion neurons and inner hair cells (IHCs) emerges as another site that could be involved in transmission abnormalities. We tested the hypothesis that the structure of these afferent terminals would differ between young animals and older animals with significant hearing loss. Afferent endings and their synapses were examined by transmission electron microscopy at approximately 45% distance from the basal end of the cochlea in 2-3 month-old and 8-12 month-old C57BL/6J mice. The number of terminals in older animals was reduced by half compared to younger animals. In contrast, there was no difference in the density of SGCs between the age groups. Older animals featured enlarged terminals and mitochondria and enlarged postsynaptic densities and presynaptic bodies. These morphological changes may be a combination of pathologic, adaptive and compensatory responses to sensory dysfunction. Improved knowledge of these processes is necessary to understand the role of afferent connectivity in dysfunction of the aging cochlea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.heares.2006.07.014 | DOI Listing |
Science
January 2025
Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
Cochlear inner hair cells (IHCs) and outer hair cells (OHCs) require different transcription factors for their cell fate stabilization and survival, suggesting separate mechanisms are involved. Here, we found that the transcription factor Casz1 was crucial for early IHC fate consolidation and for OHC survival during mouse development. Loss of Casz1 resulted in transdifferentiation of IHCs into OHCs, without affecting OHC production.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America.
Stem cell pluripotency gene Sox2 stimulates expression of proneural basic-helix-loop-helix transcription factor Atoh1. Sox2 is necessary for the development of cochlear hair cells and binds to the Atoh1 3' enhancer to stimulate Atoh1 expression. We show here that Sox2 deletion in late embryogenesis results in the formation of extra hair cells, in contrast to the absence of hair cell development obtained after Sox2 knockout early in gestation.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of Dermatology, Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
Vitiligo is an autoimmune disease characterized by the loss of functional melanocytes in the hair follicles and epidermis, leading to white patches on the skin and mucous membranes. Alopecia areata (AA) is a common immune-mediated condition in which autoimmune attack on hair follicles cause non-scarring hair loss. Both diseases significantly impact patients's physical and mental health.
View Article and Find Full Text PDFBiomed Rep
March 2025
Department of Rheumatology and Immunology, People's Hospital of Longhua, Shenzhen, Guangdong 518109, P.R. China.
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a complex etiology primarily linked to abnormalities in B lymphocytes within the human body, resulting in the production of numerous pathogenic autoantibodies. Telitacicept is a relatively novel humanized, recombinant transmembrane activator, calcium modulator and cyclophilin ligand interactor fused with the Fc portion (TACI-Fc). It works by competitively inhibiting the TACI site, neutralizing the activity of B-cell lymphocyte stimulator and A proliferation-inducing ligand.
View Article and Find Full Text PDFCureus
December 2024
Department of Dermatology, International University of Health and Welfare Narita Hospital, Narita, JPN.
A 53-year-old woman undergoing combination therapy with epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) inhibitors for advanced lung cancer with brain metastases developed pustules and punctate purpura on both lower extremities. Histopathological examination revealed neutrophilic infiltration around the hair follicles and erythrocyte extravasation in the perivascular regions near the hair roots, leading to a diagnosis of purpuric papulopustular eruptions. The rash improved with oral doxycycline (100 mg/day) and topical corticosteroids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!