Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Our previous work established that hypocholesterolemic agents altered K-ras intracellular localization in lung. Here, we examined K-ras activity to define further its potential importance in lung carcinogenesis. K-ras activity in lungs from male A/J, Swiss and C57BL/6 mice was examined. For 3 weeks, mice consumed either 2 or 4% cholestyramine (CS), 1% niacin, 5% konjac mannan (KM), or were injected with lovastatin 25mg/kg three or five times weekly (Lov-3X and Lov-5X). A pair-fed (PF) group was fed the same quantity of diet consumed by the Lov-5X mice to control for lower body weights in Lov-5X mice. After 3 weeks, serum cholesterol was assayed with a commercial kit. Activated K-ras protein from lung was affinity precipitated with a Raf-1 ras binding domain-glutathione-S-transferase fusion protein bound to glutathione-agarose beads, followed by Western blotting, K-ras antibody treatment, and chemiluminescent detection. Only KM reduced serum cholesterol (in two of three mouse strains). In C56BL/6 mice treated with Lov-3X, lung K-ras activity increased 1.8-fold versus control (p=0.009). In normal lung with wild-type K-ras, this would be expected to be associated with maintenance of differentiation. In A/J mice fed 4% CS, K-ras activity increased 2.1-fold (p=0.02), which might be responsible for the reported enhancement of carcinogenesis in carcinogen-treated rats fed CS. KM feeding and PF treatment had no significant effects on K-ras activity. These data are consistent with the concept that K-ras in lung has an oncogenic function when mutated, but may act as a tumor suppressor when wild-type.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1849957 | PMC |
http://dx.doi.org/10.1016/j.bcp.2006.08.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!