Evolutionarily-conserved role of the NF-kappaB transcription factor in neural plasticity and memory.

Eur J Neurosci

Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBINE-CONICET, Buenos Aires, Argentina.

Published: September 2006

NF-kappaB is an evolutionarily conserved family of transcription factors (TFs) critically involved in basic cellular mechanisms of the immune response, inflammation, development and apoptosis. In spite of the fact that it is expressed in the central nervous system, particularly in areas involved in memory processing, and is activated by signals such as glutamate and Ca2+, its role in neural plasticity and memory has only recently become apparent. A surprising feature of this molecule is its presence within the synapse. An increasing number of reports have called attention to the role of this TF in processes that require long-term regulation of the synaptic function underlying memory and neural plasticity. Here we review the evidence regarding a dual role for NF-kappaB, as both a signalling molecule after its activation at the synapse and a transcriptional regulator upon reaching the nucleus. The specific role of this signal, as well as the general transcriptional mechanism, in the process of memory formation is discussed. Converging lines of evidence summarized here point to a pivotal role for the NF-kappaB transcription factor as a direct signalling mechanism in the regulation of gene expression involved in long-term memory.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2006.05022.xDOI Listing

Publication Analysis

Top Keywords

role nf-kappab
12
neural plasticity
12
nf-kappab transcription
8
transcription factor
8
plasticity memory
8
memory
6
role
5
evolutionarily-conserved role
4
nf-kappab
4
factor neural
4

Similar Publications

Purpose: This study aims to investigate the role of Cytochrome b-245 chaperone 1 (CYBC1) in glioblastoma (GBM) progression, focusing on its involvement in reactive oxygen species (ROS) production and associated signaling pathways. Understanding the molecular mechanisms driven by CYBC1 could provide new therapeutic targets and prognostic markers for GBM.

Materials And Methods: Publicly available datasets were analyzed to assess CYBC1 expression in GBM and its correlation with patient survival.

View Article and Find Full Text PDF

Background: Atherosclerosis, a chronic inflammatory condition characterized by the accumulation of lipid and fibrous elements in the arterial wall, is a major contributor to cardiovascular disease. This study aimed to investigate the regulation of apoptosis and cellular aging in human umbilical vein endothelial cells by Thousand and One Amino Acid Kinase 1 (TAOK1) via Cell division cycle 20 () in the context of atherosclerosis.

Methods: The study evaluated the impact of TAOK1 on Oxidized low-density lipoprotein (ox-LDL)-induced changes in cell viability, angiogenesis, cell senescence, apoptosis, cell cycle arrest, and related signaling pathways in human umbilical vein endothelial cells (HUVECs) using Cell Counting Kit-8, β-galactosidase staining, flow cytometry, and western blot.

View Article and Find Full Text PDF

SPP1+ macrophages promote head and neck squamous cell carcinoma progression by secreting TNF-α and IL-1β.

J Exp Clin Cancer Res

December 2024

Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Background: Head and neck squamous cell carcinoma (HNSCC) is a very aggressive disease characterized by a heterogeneous tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs) constitute the major innate immune population in the TIME where they facilitate crucial regulatory processes that participate in malignant tumor progression. SPP1 + macrophages (SPP1 + Macs) are found in many cancers, but their effects on HNSCC remain unknown.

View Article and Find Full Text PDF

Noise exposure is one of the most common causes of sensorineural hearing loss. Although many studies considered inflammation to be a major contributor to noise-induced hearing loss, the process of cochlear inflammation is still unclear. Studies have found that activation of the NF-κB signaling pathway results in the accumulation of macrophages in the inner ear plays an important role in hair cell damage.

View Article and Find Full Text PDF

Exogenous acetate attenuates inflammatory responses through HIF-1α-dependent glycolysis regulation in macrophage.

Cell Mol Life Sci

December 2024

Faculty of Anesthesiology, Changhai Hospital (First Affiliated Hospital of Naval Medical University), Naval Medical University, Shanghai, 200433, China.

Cytokine storm is a hallmark for acute systemic inflammatory disease like sepsis. Intrinsic microbiome-derived short-chain fatty acid (SCFAs) like acetate modulates immune cell function and metabolism has been well studied. However, it remains poorly investigated about the effects and the underlying mechanism of exogenous acetate in acute inflammation like sepsis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!