We demonstrate seedless synthesis of gold nanorods at high temperatures up to 97 degrees C. Using the correct silver nitrate concentration is crucial for formation of rod-shaped particles at all temperatures. We observed a decrease of nanorod length with increasing temperature, while the width stays constant throughout the temperature range. From kinetics studies, we show 3 orders of magnitude increase in nanorod growth rate when the temperature is raised from room temperature to 97 degrees C. From the temperature dependence of the growth rate, we obtain a average activation energy for growth on all facets of 90 +/- 10 kJ mol(-1). High-temperature synthesis of gold nanorods presents a more attractive method for scalable flow-based production of gold nanorods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0635866 | DOI Listing |
ACS Nano
January 2025
Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China.
Circular differential scattering (CDS) spectroscopy has been developed as a powerful method for the characterization of the optical activity of individual plasmonic nanostructures and their complexes with chiral molecules. However, standard measurement setups often result in artifacts that have long raised concerns on the interpretation of spectral data. In fact, the detection limit of CDS setups is constrained by the high level of artifacts, to ±10%.
View Article and Find Full Text PDFSmall
January 2025
Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, P. R. China.
Topical transdermal drug delivery for psoriasis remains a challenge because of the poor solubility of hydrophobic drugs and the limited penetration of the stratum corneum. In this study, a near-infrared (NIR) light-responsive thermosensitive hydrogel (PDLLA-PEG-PDLLA, PLEL)-based drug reservoir is developed that directly incorporated gold nanorods (GNRs) and methotrexate (MTX) in the sol state at low temperature, which is referred to as PLEL@GNR+MTX. The in vitro anti-psoriasis experiment indicated that, GNRs, as photothermal cores of composite hydrogel, not only triggered keratinocyte apoptosis but also promoted MTX release in a synergistic manner.
View Article and Find Full Text PDFSoft Matter
January 2025
College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, P. R. China.
Bio-friendly antibacterial -halamine polymers were used to modify gold nanorods (GNR@pAMPS-Cl), which showed excellent antimicrobial activity against antibiotic-resistant bacteria and accelerated the healing of MRSA-infected wounds. This work provides a new strategy for the preparation of nanoscale antibacterial materials.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; DR Cure Inc., Hwasun 58128, Republic of Korea. Electronic address:
Cancer photoimmunotherapy represents an intelligent and highly efficient therapeutic approach that harnesses the photothermal effect to precisely target and ablate tumor tissues, while simultaneously modulating the immune system to achieve tumor elimination. The integration of multifunctional therapeutic modalities for combined photoimmunotherapy requires advanced drug delivery systems. However, the design of a single nanoagent capable of serving as a multifunctional nanophotosensitizer remains a significant challenge.
View Article and Find Full Text PDFTalanta
January 2025
State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
Research on metasurface sensors with high sensitivity, strong specificity, good biocompatibility and strong integration is the key to promote the application of terahertz waves in the field of biomedical detection. However, traditional metallic terahertz metasurfaces have shortcomings such as poor biocompatibility and large ohmic loss in the terahertz frequency band, impeding their further application and integration in the field of biosensing detection. Here, we overcome this challenge by proposing a high-performance terahertz metasurface based on gold nanoparticles and single-walled carbon nanotubes composite film.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!