To extend the potential of antibodies and their derivatives to provide passive protection against enteric infections when supplied orally in crude plant extracts, we have expressed both a small immune protein (SIP) and a full-length antibody in plants using two different plant virus vectors based on potato virus X (PVX) and cowpea mosaic virus (CPMV). The alphaSIP molecule consisted of a single chain antibody (scFv) specific for the porcine coronavirus, transmissible gastroenteritis virus (TGEV) linked to the alpha-CH3 domain from human IgA. To express the full-length IgA, the individual light and heavy chains from the TGEV-specific mAb 6A.C3 were inserted into separate PVX constructs and plants were co-infected with both constructs. Western blot analysis revealed the efficient expression of both the SIP and IgA molecules. Analysis of crude plant extracts revealed that both the plant-expressed alphaSIP and IgA molecules could bind to and neutralize TGEV in tissue culture, indicating that active molecules were produced. Oral administration of crude extracts from antibody-expressing plant tissue to 2-day-old piglets showed that both the alphaSIP and full-length IgA molecules can provide in vivo protection against TGEV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161777 | PMC |
http://dx.doi.org/10.1002/biot.200600143 | DOI Listing |
Hum Immunol
January 2025
Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. Electronic address:
Background: It has been demonstrated that COVID-19 vaccines confer significant protection, but temporal decay in the vaccine-induced antibodies has been reported; therefore, a third booster dose was considered. Human leukocyte antigen (HLA) class II molecules act as antigen presenting structures, play critical roles in the formation of an efficient antibody response. The current study aimed to evaluate the anti-receptor binding domain (RBD) antibody response after the booster dose of SpikoGen® vaccine in individuals with a history of Sinopharm primary vaccination series and its association with HLA-DQB1 and -DRB alleles.
View Article and Find Full Text PDFFront Immunol
January 2025
Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.
Background: Despite its proven effectiveness and safety, there are limited real-world data on CoronaVac's immunogenicity in children, especially in lower-income countries, particularly for SARS-CoV-2 variants. We present a real-world study evaluating CoronaVac's immunogenicity in Colombian children stratified by previous exposure to this virus.
Methods: 89 children aged 3-11 years were enrolled (50 Non-Exposed and 39 Exposed).
CNS Neurosci Ther
January 2025
Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
Aims: To analyze the effect of APOE ε4 on fluid biomarkers and the correlations between blood molecules and CSF biomarkers in AD patients.
Methods: This study enrolled 575 AD patients, 131 patients with non-AD dementia, and 112 cognitively normal (CN) participants, and AD patients were divided into APOE ε4 carriers and non-carriers. Cerebrospinal fluid (CSF) biomarkers and blood-derived biomolecules were compared between AD and CN groups, between non-AD dementia and CN groups, as well as within APOE ε4 subgroups of AD patients.
Pediatr Int
December 2024
Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
Tolerance to foreign molecules is primarily induced through three pathways: anergy, active suppression, and clonal deletion. The immaturity of gut functions, including digestion and barrier protection against foreign molecules during early infancy, is closely linked to the induction of tolerance. A significant number of undigested peptides can pass through leaky gut walls during this period, making it an opportune time to introduce active suppression and clonal deletion in the intestine.
View Article and Find Full Text PDFPlant Biotechnol J
December 2024
BioSystems Design Lab, Department of Medicine, College of Medicine, Chung-Ang University, Seoul, Korea.
Epithelial cell adhesion molecule (EpCAM) fused to IgG, IgA and IgM Fc domains was expressed to create IgG, IgA and IgM-like structures as anti-cancer vaccines in Nicotiana tabacum. High-mannose glycan structures were generated by adding a C-terminal endoplasmic reticulum (ER) retention motif (KDEL) to the Fc domain (FcK) to produce EpCAM-Fc and EpCAM-FcK proteins in transgenic plants via Agrobacterium-mediated transformation. Cross-fertilization of EpCAM-Fc (FcK) transgenic plants with Joining chain (J-chain, J and JK) transgenic plants led to stable expression of large quaternary EpCAM-IgA Fc (EpCAM-A) and IgM-like (EpCAM-M) proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!