The objective of this research is to develop arrays of tuned chemical sensors wherein each sensor element responds to a particular target analyte in a unique manner. By creating sol-gel-derived xerogels that are co-doped with two luminophores at a range of molar ratios, we can form suites of sensor elements that can exhibit a continuum of response profiles. We trained an artificial neural network (ANN) to "learn" to identify the optical outputs from these xerogel-based sensor arrays. By using the ANN in concert with our tailored sensor arrays we obtained a 5-10 fold improvement in accuracy and precision for quantifying O2 in unknown samples. We also explored the response characteristics of these types of sensor elements after they had been contacted with rat plasma/blood. Contact with plasma/blood caused approximately 15% of the luminophore molecules within the xerogels to become non-responsive to O2. This behavior is consistent with rat albumin blocking certain pore sub-populations within the mesoporous xerogel matrix thereby limiting O2 access to the luminophores.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b604214gDOI Listing

Publication Analysis

Top Keywords

sensor arrays
12
xerogel-based sensor
8
artificial neural
8
accuracy precision
8
sensor elements
8
sensor
6
tailored xerogel-based
4
arrays
4
arrays artificial
4
neural networks
4

Similar Publications

Perovskite retinomorphic image sensor for embodied intelligent vision.

Sci Adv

January 2025

Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Retinomorphic systems that can see, recognize, and respond to real-time environmental information will extend the complexity and range of tasks that an exoskeleton robot can perform to better assist physically disabled people. However, the lack of ultrasensitive, reconfigurable, and large-scale integratable retinomorphic devices and advanced edge-processing algorithms makes it difficult to realize retinomorphic hardware. Here, we report the retinomorphic hardware prototype with a 4096-pixel perovskite image sensor array as core module to endow embodied intelligent vision functionalities.

View Article and Find Full Text PDF

We introduce a novel technique for enhancing the robustness of light-pulse atom interferometers against the pulse infidelities that typically limit their sensitivities. The technique uses quantum optimal control to favorably harness the multipath interference of the stray trajectories produced by imperfect atom-optics operations. We apply this method to a resonant atom interferometer and achieve thousandfold phase amplification, representing a 50-fold improvement over the performance observed without optimized control.

View Article and Find Full Text PDF

Endurable IGZO/SnS/IGZO Heterojunction Phototransistor Arrays for Image Sensors.

ACS Appl Mater Interfaces

January 2025

School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

Optoelectronic devices require stable operation to detect repetitive visual information. In this study, endurable arrays based on heterojunction phototransistors composed of indium-gallium-zinc oxide (IGZO) with a low dark current and tin sulfide (SnS) capable of absorbing visible light are developed for image sensors. The tandem structure of IGZO/SnS/IGZO (ISI) enables stable operation under repetitive exposure to visible light by improving the transport ability of the photoexcited carriers through mitigated trap sites and their separation into each IGZO layer.

View Article and Find Full Text PDF

Achieving sensors that can sensitively and selectively quantify levels of analytes in complex biofluids such as blood remains a significant challenge. To address this, we synthesized an array of isolated carbon nanochannels on a flat gold electrode that function as molecular sieves to prevent protein fouling and eliminate the need for antifouling layers. Utilizing a two-step pulsed technique, a reductive pulse expels negative interferences and fouling molecules followed by an oxidative pulse that oxidizes glucose at the bottom of the channel and on the gold surface.

View Article and Find Full Text PDF

Flexible pressure sensors have shown significant application prospects in fields such as artificial intelligence and precision manufacturing. However, most flexible pressure sensors are often prepared using polymer materials and precise micronano processing techniques, which greatly limits the widespread application of sensors. Here, this work chooses textile material as the construction material for the sensor, and its latitude and longitude structure endows the sensor with a natural structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!