An analytical method has been developed for the quantification of two herbicides (ethidimuron and methabenzthiazuron) and their two main soil derivatives. This method involves fluidized-bed extraction (FBE) prior to cleanup and analysis by reverse-phase liquid chromatography with UV detection at 282 nm. FBE conditions were established to provide efficient extraction without degradation of the four analytes. (14)C-labeled compounds were used for the optimization of extraction and purification steps and for the determination of related efficiencies. Extraction was optimal using a fexIKA extractor operating at 110 degrees C for three cycles (total time = 95 min) with 75 g of soil and 150 mL of a 60:40 v/v acetone/water mixture. Extracts were further purified on a 500 mg silica SPE cartridge. Separation was performed on a C18 Purosphere column (250 mm x 4 mm i.d.), at 0.8 mL min(-1) and 30 degrees C with an elution gradient made up of phosphoric acid aqueous solution (pH 2.2) and acetonitrile. Calibration curves were found to be linear in the 0.5-50 mg L(-1) concentration range. Besides freshly spiked soil samples, method validation included the analysis of samples with aged residues. Recovery values, determined from spiked samples, were close to 100%. Limits of detection ranged between 2 and 3 microg kg(-1) of dry soil and limits of quantification between 8 and 10 microg kg(-1) of dry soil. An attempt to improve these performances by using fluorescence detection following postcolumn derivatization by orthophthalaldehyde-mercaptoethanol reagent was unsuccessful.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf061042v | DOI Listing |
Environ Toxicol Chem
September 2012
Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich, Germany.
Soil drying and rewetting may alter the release and availability of aged pesticide residues in soils. A laboratory experiment was conducted to evaluate the influence of soil drying and wetting on the release of pesticide residues. Soil containing environmentally long-term aged (9-17 years) (14) C-labeled residues of the herbicides ethidimuron (ETD) and methabenzthiazuron (MBT) and the fungicide anilazine (ANI) showed a significantly higher release of (14) C activity in water extracts of previously dried soil compared to constantly moistened soil throughout all samples (ETD: p < 0.
View Article and Find Full Text PDFEnviron Pollut
September 2012
Institute of Bio- and Geosciences, IBG-2-Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
The fate of the 14C-labeled herbicides ethidimuron (ETD), methabenzthiazuron (MBT), and the fungicide anilazine (ANI) in soils was evaluated after long-term aging (9-17 years) in field based lysimeters subject to crop rotation. Analysis of residual 14C activity in the soils revealed 19% (ETD soil; 0-10 cm depth), 35% (MBT soil; 0-30), and 43% (ANI soil; 0-30) of the total initially applied. Accelerated solvent extraction yielded 90% (ETD soil), 26% (MBT soil), and 41% (ANI soil) of residual pesticide 14C activity in the samples.
View Article and Find Full Text PDFJ Environ Qual
October 2010
Agrosphere Institute, ICG 4, Forschungszentrum Jülich GmbH, Leo-Brandtstrasse, D-52425 Jülich, Germany.
In Germany, zero-tension lysimeters are used as part of the registration requirements in case pesticides pose a potential threat to contaminate the groundwater. However, the water regime and the method of pesticide sampling differ between the lysimeters and the field. We monitored the transport of the two herbicides ethidimuron [1-(5- ethylsulfonyl-1,3,4-thiadiazol-2-yl)-1,3-dimethylurea] (ETD) and methabenzthiazuron [1-benzothiazol-2-yl-1,3-dimethyl-urea] (MBT) and their main metabolite, accompanied with bromide as conservative tracer, in zero-tension lysimeters filled with undisturbed soil and in the field.
View Article and Find Full Text PDFJ Agric Food Chem
October 2006
Laboratoire des Sciences Analytiques, UMR 5180 CNRS-UCBL, bât CPE 43, boulevard du 11 novembre 1918, 69622 Villeurbanne cédex, France.
An analytical method has been developed for the quantification of two herbicides (ethidimuron and methabenzthiazuron) and their two main soil derivatives. This method involves fluidized-bed extraction (FBE) prior to cleanup and analysis by reverse-phase liquid chromatography with UV detection at 282 nm. FBE conditions were established to provide efficient extraction without degradation of the four analytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!