Molded, high surface area polymer electrolyte membranes from cured liquid precursors.

J Am Chem Soc

Department of Chemistry and the Institute for Advanced Materials, Nanoscience and Technology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Published: October 2006

Polymer electrolyte membranes (PEMs) for fuel cells have been synthesized from easily processable, 100% curable, low molecular weight reactive liquid precursors that are photochemically cured into highly proton conductive solid membranes. The liquid precursors were directly cured into membranes of desired dimensions without the need for further processing steps such as melt extrusion or solvent casting. By employing chemical cross-linking, high proton conductivities can be achieved through the incorporation of significant levels of acidic groups without rendering the material water-soluble, which plagues commonly used non-cross-linked polymers. Fabrication of membrane electrode assemblies (MEAs) from these PEMs resulted in fuel cells that outperformed those based on commercial materials. Moreover, these liquid precursors enabled the formation of three-dimensional, patterned PEMs with high fidelity, micron-scale features by using soft lithographic/micromolding techniques. The patterned membranes provided a larger interfacial area between the membrane and catalyst layer than standard flat PEMs. MEAs composed of the patterned membranes demonstrated higher power densities over that of flat ones without an increase in the macroscopic area of the fuel cells. This can potentially miniaturize fuel cells and promote their application in portable devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja064391eDOI Listing

Publication Analysis

Top Keywords

liquid precursors
16
fuel cells
16
polymer electrolyte
8
electrolyte membranes
8
pems fuel
8
patterned membranes
8
membranes
6
molded high
4
high surface
4
surface area
4

Similar Publications

Background: Bacteria in physiological environments can generate mineralizing biofilms, which are associated with diseases like periodontitis or kidney stones. Modelling complex environments presents a challenge for the study of mineralization in biofilms. Here, we developed an experimental setup which could be applied to study the fundamental principles behind biofilm mineralization on rigid substrates, using a model organism and in a tailored bioreactor that mimics a humid environment.

View Article and Find Full Text PDF

Mechanochemical Synthesis of Type III Porous Liquids from Solid Precursors for the Removal and Conversion of Waste CO from CH.

Adv Mater

January 2025

State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.

Porous liquids (PLs) have emerged as a promising class of flow porous materials, offering distinctive benefits for sustainable separation processes coupled with catalytic transformations in the chemical industry. Despite their potential, challenges remain in the realms of synthesis complexity, stability, and the strategic engineering of separation and catalytic sites. In this study, a scalable mechanochemical synthetic approach is reported to fabricate Type III PLs from solid precursors with high stability.

View Article and Find Full Text PDF

Effect of spring runoff on 2,6-dichloro-1,4-benzoquinone formation during water treatment.

J Environ Sci (China)

July 2025

Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada. Electronic address:

This study investigated the impacts of spring runoff on the formation of halobenzoquinones (HBQs) and their correlation with common water quality parameters (WQPs) and aromatic amino acids (AAs) in source water. Source water and treated water samples were collected at two drinking water treatment plants in 2021, 2022, and 2023. HBQs and aromatic AAs were analyzed using solid phase extraction with high performance liquid chromatography-tandem mass spectrometry methods.

View Article and Find Full Text PDF

Objectives: Systemic administration of conditioned medium (CM) from stem cells derived from human exfoliated deciduous teeth (SHED-CM) in mouse models of rheumatoid arthritis, osteoporosis, and osteoarthritis suppresses excessive osteoclast activity and restores bone integrity. However, the mechanism through which SHED-CM regulates osteoclastogenesis remains largely unknown. In the present study, we examined the anti-osteoclastogenic mechanism of SHED-CM in vitro.

View Article and Find Full Text PDF

A comprehensive quantitative LC-MS/MS method for rapid gelatin source identification in food products: Comparison with PCR.

Food Res Int

February 2025

New Hazardous Substances Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Chungcheongbuk-do 28159, Republic of Korea. Electronic address:

Authentication of gelatin sources are required for cultural beliefs and food integrity. This paper describes a sensitive and rapid detection of gelatin sources using liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The specific peptide markers were adopted to accurately identify bovine and porcine gelatin in pharmaceutical capsules and jellies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!