The S. cerevisiae genome is the most well-characterized eukaryotic genome and one of the simplest in terms of identifying open reading frames (ORFs), yet its primary annotation has been updated continually in the decade since its initial release in 1996 (Goffeau et al., 1996). The Saccharomyces Genome Database (SGD; www.yeastgenome.org) (Hirschman et al., 2006), the community-designated repository for this reference genome, strives to ensure that the S. cerevisiae annotation is as accurate and useful as possible. At SGD, the S. cerevisiae genome sequence and annotation are treated as a working hypothesis, which must be repeatedly tested and refined. In this paper, in celebration of the tenth anniversary of the completion of the S. cerevisiae genome sequence, we discuss the ways in which the S. cerevisiae sequence and annotation have changed, consider the multiple sources of experimental and comparative data on which these changes are based, and describe our methods for evaluating, incorporating and documenting these new data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040122 | PMC |
http://dx.doi.org/10.1002/yea.1400 | DOI Listing |
G3 (Bethesda)
January 2025
Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Evidence suggests that increases in ploidy have occurred frequently in the evolutionary history of organisms and can serve adaptive functions to specialized somatic cells in multicellular organisms. However, the sudden multiplication of all chromosome content may present physiological challenges to the cells in which it occurs. Experimental studies have associated increases in ploidy with reduced cell survival and proliferation.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Physics, 845 W Taylor St, University of Illinois Chicago, Chicago, IL 60607, USA.
Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.
View Article and Find Full Text PDFFoods
December 2024
Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
In winemaking, malolactic fermentation (MLF), which converts L-malic acid to L-lactic acid, is often applied after the alcoholic fermentation stage to improve the sensory properties of the wine and its microbiological stability. MLF is usually performed by lactic acid bacteria, which, however, are sensitive to the conditions of alcoholic fermentation. Therefore, the development of wine yeast strains capable of both alcoholic fermentation and MLF is an important task.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Institute of Bioinformatics, University of Georgia, 120 E. Green St., Athens, GA, USA.
Horizontal transposon transfer (HTT) plays an important role in the evolution of eukaryotic genomes, however the detailed evolutionary history and impact of most HTT events remain to be elucidated. To better understand the process of HTT in closely related microbial eukaryotes, we studied Ty4 retrotransposon subfamily content and sequence evolution across the genus Saccharomyces using short- and long-read whole genome sequence data, including new PacBio genome assemblies for two S. mikatae strains.
View Article and Find Full Text PDFJ Gen Virol
January 2025
Biochemistry Program, The University of the South, Sewanee, TN, USA.
The murine hepatitis virus (MHV) is an important model system for studying coronavirus (CoV) molecular and cell biology. Despite this, few reagents for MHV are available through repositories such as ATCC or Addgene, potentially limiting the widespread adoption of MHV as a tractable model system. To overcome some challenges inherent in the existing MHV reverse genetics systems, we developed a plasmid-launched transformation-associated recombination (TAR) cloning-based system to assemble the MHV (strain A59; MHV-A59) genome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!