Aims/hypothesis: Beta cell development is sensitive to glucocorticoid levels. Although direct effects of glucocorticoids on pancreatic precursors have been shown to control beta cell mass expansion, indirect effects of these hormones on pancreatic development remain unexplored. This issue was addressed in mice lacking the glucocorticoid receptor (GR) in the whole organism.

Materials And Methods: The pancreatic phenotype of GR(null/null) mice was studied at fetal ages (embryonic day [E]) E15.5 and E18 by immunohistochemistry and beta cell fraction measurements. To distinguish between direct and indirect effects, mutant E15.5 fetal pancreata were grafted under the kidney capsule of immunodeficient mice and analysed after 1 week.

Results: E18 GR(null/null) fetuses had smaller digestive tracts and tiny pancreata. Massive pancreatic disorganisation and apoptosis were observed despite the presence of all cell types. E15.5 GR(null/null) mutants were indistinguishable from wild-type regarding pancreatic size, tissue structure and organisation, beta cell fraction and production of exocrine transcription factor Ptf1a, neurogenin 3 and Pdx-1. Grafting E15.5 GR(null/null) pancreata into a GR-expressing environment rescued the increased apoptosis and mature islets were observed, suggesting that GR(null/null) pancreatic cell death can be attributed to indirect effects of glucocorticoids on this tissue. Heterozygous GR(+/null) mutants with reduced GR numbers showed no apoptosis but increased beta cell fraction at E18 and the adult age, strengthening the importance of an accurate GR dosage on beta cell mass expansion.

Conclusions/interpretation: Our results provide evidence for GR involvement in pancreatic tissue organisation and survival through indirect effects. GR does not appear necessary for early phases, but its accurate dosage is critical to modulate beta cell mass expansion at later fetal stages, presumably through direct effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1885455PMC
http://dx.doi.org/10.1007/s00125-006-0449-3DOI Listing

Publication Analysis

Top Keywords

beta cell
28
indirect effects
20
cell mass
12
cell fraction
12
cell
9
pancreatic
8
pancreatic development
8
direct indirect
8
direct effects
8
effects glucocorticoids
8

Similar Publications

Objective: To analyze the characteristics of pulmonary nodules (PNs) and related influencing factors in patients with type 2 diabetes mellitus (T2DM).

Methods: Retrospectively analyzed the clinical and biochemical characteristics of 224 patients with PNs and 488 patients with non-PNs in patients with T2DM, and compared the clinical data of 72 patients with large nodules (≥ 5 mm) and 152 patients with small nodules (< 5 mm) in the pulmonary nodules (PNs) group.

Results: Compared to the non-PNs group, the PNs Patients in the group had a longer duration of diabetes, higher age, serum creatinine (SCR), blood urea nitrogen (BUN) and the lower albumin (ALB) and body mass index (BMI); women, diabetic retinopathy (DR), diabetic peripheral neuropathy (DPN), and estimated glomerular filtration rate (eGFR) < 60 ml/min1.

View Article and Find Full Text PDF

Novel predictive biomarkers for atonic postpartum hemorrhage as explored by proteomics and metabolomics.

BMC Pregnancy Childbirth

January 2025

Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Peking University Third Hospital), National Center for Healthcare Quality Management in Obstetrics, Beijing, 100191, China.

Background: Postpartum hemorrhage (PPH) is the leading cause of maternal mortality worldwide, with uterine atony accounting for approximately 70% of PPH cases. However, there is currently no effective prediction method to promote early management of PPH. In this study, we aimed to screen for potential predictive biomarkers for atonic PPH using combined omics approaches.

View Article and Find Full Text PDF

C3AR1 as a target for preeclampsia: from bioinformatics and network pharmacology to experimental validation.

BMC Pregnancy Childbirth

January 2025

Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China.

Background: Preeclampsia, characterized by hypertension and proteinuria during pregnancy, poses significant risks to both mother and fetus. The complement system's aberrant activation, notably the C3AR1, is important to the pathogenesis of preeclampsia, although the precise mechanisms are not fully understood.

Materials And Methods: Utilizing the Comparative Toxicogenomics Database (CTD) and Molecular Signatures Database (MSigDB), we identified complement system targets associated with preeclampsia and environmental pollutants.

View Article and Find Full Text PDF

Mechanistic study of the effect of a high-salt diet on the intestinal barrier.

Sci Rep

January 2025

School of Health Preservation and Rehabilitation, Chengdu University of TCM, Shierqiao Road, Chengdu, 610075, Sichuan, People's Republic of China.

Despite the established link between chronic high salt diet (HSD) and an increase in gut inflammation, the effect of HSD on the integrity of the intestinal barrier remains understudied. The present study aims to investigate the impact of HSD on the intestinal barrier in rats, encompassing its mechanical, mucous, and immune components. Expression levels of intestinal tight junction proteins and mucin-2 (MUC2) in SD rats were analyzed using immunofluorescence.

View Article and Find Full Text PDF

Mechanisms related to tumor evasion from NK cell-mediated immune surveillance remain enigmatic. Dickkopf-1 (DKK1) is a Wnt/β-catenin inhibitor, whose levels correlate with breast cancer progression. We find DKK1 to be expressed by tumor cells and cancer-associated fibroblasts (CAFs) in patient samples and orthotopic breast tumors, and in bone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!