Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Farnesylthiosalicylic acid (FTS) is a Ras inhibitor that dislodges all active Ras isoforms from the membrane. We assessed the ability of FTS to reverse the transformed phenotype of neurofibromatosis type 1 (NF1)-associated tumor cell lines of malignant peripheral nerve sheath tumor (MPNST).
Experimental Design: nf1 mutations were genotyped, allelic losses were analyzed, and neurofibromin expression levels were determined in MPNST cell lines ST88-14, S265P21, and 90-8. The effects of FTS on GTP-bound Ras (Ras-GTP) and its prominent downstream targets, as well as on cell morphology, anchorage-dependent and anchorage-independent growth, and tumor growth in mice, were assessed.
Results: The MPNST cell lines were biallelic, NF1 inactive, and neurofibromin deficient. We show that FTS treatment shortened the relatively long duration of Ras activation and signaling to extracellular signal-regulated kinase, Akt, and RalA in all NF1-deficient MPNST cell lines (NF1 cells) to that observed in a non-NF1, normally expressing neurofibromin MPNST cell line. These effects of FTS led to lower steady-state levels of Ras-GTP and its activated targets. Both anchorage-dependent and anchorage-independent growth of NF1 cells were dose dependently inhibited by FTS, and the inhibition correlated positively with Ras-GTP levels. NF1 cells were found to possess strong actin stress fibers, and this phenotype was also corrected by FTS. NF1 tumor growth in a nude mouse model was inhibited by oral FTS.
Conclusions: FTS treatment of NF1 cells normalized Ras-GTP levels, resulting in reversal of the transformed phenotype and inhibition of tumor growth. FTS may therefore be considered as a potential drug for the treatment of NF1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1078-0432.CCR-06-0792 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!