Purpose: Plasmid DNAs encoding cytokines enhance immune responses to vaccination in models of infectious diseases and cancer. We compared DNA adjuvants for their ability to enhance immunity against a poorly immunogenic self-antigen expressed by cancer.

Experimental Design: DNAs encoding cytokines that affect T cells [interleukin (IL)-2, IL-12, IL-15, IL-18, IL-21, and the chemokine CCL21] and antigen-presenting cells [granulocyte macrophage colony-stimulating factor (GM-CSF)] were compared in mouse models as adjuvants to enhance CD8+ T-cell responses and tumor immunity. A DNA vaccine against a self-antigen, gp100, expressed by melanoma was used in combination with DNA encoding cytokines and cytokines fused to the Fc domain of mouse IgG1 (Ig).

Results: We found that (a) cytokine DNAs generally increased CD8+ T-cell responses against gp100; (b) ligation to Fc domains further enhanced T-cell responses; (c) adjuvant effects were sensitive to timing of DNA injection; (d) the most efficacious individual adjuvants for improving tumor-free survival were IL-12/Ig, IL-15/Ig, IL-21/Ig, GM-CSF/Ig, and CCL21; and (e) combinations of IL-2/Ig+IL-12/Ig, IL-2/Ig+IL-15/Ig, IL-12/Ig+IL-15/Ig, and IL-12/Ig+IL-21/Ig were most active; and (f) increased adjuvanticity of cytokine/Ig fusion DNAs was not related to higher tissue levels or greater stability.

Conclusions: These observations support the potential of cytokine DNA adjuvants for immunization against self-antigens expressed by cancer, the importance of timing, and the enhancement of immune responses by Fc domains through mechanisms unrelated to increased half-life.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-06-0979DOI Listing

Publication Analysis

Top Keywords

encoding cytokines
16
t-cell responses
12
dna encoding
8
cytokines fused
8
dnas encoding
8
immune responses
8
dna adjuvants
8
cd8+ t-cell
8
dna
6
cytokines
5

Similar Publications

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

Bacterial flagellin, a potent intestinal innate immune activator, prevents murine rotavirus (RV) infection independent of adaptive immunity and interferons. The flagellin-induced immunity is mediated by Toll-like receptor (TLR5) and Nod-like receptor C4 (NLRC4), which elicit the production of interleukins 22 (IL-22) and IL-18, respectively. Here, we assessed whether a high abundance of flagellin at the time of vaccination would negatively affect the oral RV vaccine take.

View Article and Find Full Text PDF

Background: Chronic active Epstein-Barr virus (CAEBV) infection is a rare disease in which the Epstein-Barr virus (EBV) persists and replicates, causing chronic symptoms and fatal complications. The treatment of CAEBV is still evolving. Our case report showed a new therapy for CAEBV.

View Article and Find Full Text PDF

The objective of this study was to identify key secretory protein-encoding differentially expressed genes (SP-DEGs) in adipose tissue in female metabolic syndrome, thus detecting potential targets in treatment. We examined gene expression profiles in 8 women with metabolic syndrome and 7 healthy, normal body weight women. A total of 143 SP-DEGs were screened, including 83 upregulated genes and 60 downregulated genes.

View Article and Find Full Text PDF

Macrophage-specific in vivo RNA editing promotes phagocytosis and antitumor immunity in mice.

Sci Transl Med

January 2025

College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.

Macrophages play a central role in antitumor immunity, making them an attractive target for gene therapy strategies. However, macrophages are difficult to transfect because of nucleic acid sensors that can trigger the degradation of foreign plasmid DNA. Here, we developed a macrophage-specific editing (MAGE) system by which compact plasmid DNA encoding a CasRx editor can be delivered to macrophages by a poly(β-amino ester) (PBAE) carrier to bypass the DNA sensor and enable RNA editing in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!