The extracellular signal-regulated kinases (ERK1 and ERK2) are important mediators of cell proliferation. Constitutive activation of the ERK proteins plays a critical role in the proliferation of many human cancers. Taking advantage of recently identified substrate docking domains on ERK2, we have used computer-aided drug design (CADD) to identify novel low molecular weight compounds that interact with ERK2 in an ATP-independent manner and disrupt substrate-specific interactions. In the current study, a CADD screen of the 3D structure of active phosphorylated ERK2 protein was used to identify inhibitory compounds. We tested 13 compounds identified by the CADD screen in ERK-specific phosphorylation, cell proliferation, and binding assays. Of the 13 compounds tested, 4 compounds strongly inhibited ERK-mediated phosphorylation of ribosomal S6 kinase-1 (Rsk-1) and/or the transcription factor Elk-1 and inhibited the proliferation of HeLa cervical carcinoma cells with IC(50) values in the 2-10 microM range. These studies demonstrate that CADD can be used to identify lead compounds for development of novel non-ATP-dependent inhibitors selective for active ERK and its interactions with substrates involved in cancer cell proliferation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1857279PMC
http://dx.doi.org/10.1016/j.bmcl.2006.09.038DOI Listing

Publication Analysis

Top Keywords

cell proliferation
12
cadd identify
8
cadd screen
8
compounds tested
8
tested compounds
8
compounds
6
erk2
5
proliferation
5
characterization atp-independent
4
atp-independent erk
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!