Background And Purpose: Shockwave lithotripsy (SWL) has become a first-line intervention for treatment of nephrolithiasis. However, few studies have examined the effects of modifications in the method of shockwave energy administration on comminution efficiency. We propose that a gradual increase in output voltage will produce superior stone fragmentation in comparison with a constant or a decreasing output voltage by optimizing the stress wave and cavitation erosion forces on renal calculi.

Materials And Methods: BegoStone phantoms were implanted in the renal pelvis of 11 pigs that underwent SWL at a pulse repetition rate of 1 Hz. Animals in the increasing strategy group (N = 4) were subjected to 18, 20, and 22 kV for 600, 600, and 800 shocks, respectively. The second group (N = 4) received a decreasing strategy of 22, 20, and 18 kV for 800, 600, and 600 shocks, respectively. The third group (N = 3) received all 2000 shocks at 20 kV, mimicking the clinical protocol.

Results: A progressively decreasing strategy and constant output voltage produced a mean comminution efficiency, or percentage of stone fragments <2 mm, of 89.0% +/- 3.3% and 87.6% +/- 1.7%, respectively. The mean comminution efficiency was improved to 96.5% +/- 1.4% by using the increasing strategy (P = 0.01).

Conclusions: A progressive increase in lithotripter output voltage during SWL can produce greater stone fragmentation than protocols employing constant or decreasing output voltage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1931482PMC
http://dx.doi.org/10.1089/end.2006.20.603DOI Listing

Publication Analysis

Top Keywords

output voltage
12
comminution efficiency
8
600 600
8
group received
8
decreasing strategy
8
progressive increase
4
increase lithotripter
4
output
4
lithotripter output
4
output produces
4

Similar Publications

Chitosan (CHT) is a known piezoelectric biomacromolecule; however, its usage is limited due to rapid degradation in an aqueous system. Herein, we prepared CHT film via a solvent casting method and cross-linked in an alkaline solution. Sodium hydroxide facilitated deprotonation, leading to increased intramolecular hydrogen bonding and mechanical properties.

View Article and Find Full Text PDF

Porous piezoelectric materials have attracted much interest in the fields of sensing and energy harvesting owing to their low dielectric constant, high piezoelectric voltage coefficient, and energy harvesting figure of merit. However, the introduction of porosity can decrease the piezoelectric coefficient, which restricts the enhancement of output current and power density. Herein, to overcome these challenges, an array-structured piezoelectric composite energy harvester with aligned porosity was constructed via a dual structure design strategy to enhance the output current and power density.

View Article and Find Full Text PDF

In this study, we report the successful fabrication of a novel antibacterial triboelectric nanogenerator (TENG) using a polymer composite film based on polyhexamethylene guanidine hydrochloride (PHMG). The composite materials, with optimised ingredient ratios, consist of PHMG, polyvinyl alcohol (PVA) and glutaraldehyde (GA) as a crosslinking agent (PHMG-GA-PVA). Utilising 3D printing, these composite materials were directly deposited on the conductive substrates and used as positive TENG electrodes.

View Article and Find Full Text PDF

Adhesive joining has the severe limitation that damages/defects developed in the bondline are difficult to assess. Conventional non-destructive examination (NDE) techniques are adequate to reveal disbonding defects in fabrication and delamination near the end of service life but are not helpful in detecting and monitoring in-service degradation of the joint. Several techniques suitable for long-term joint integrity monitoring are proposed.

View Article and Find Full Text PDF

Herein, we discuss the idea that fluorescent materials/molecules should logically show potential photoelectrochemistry (PEC) activity, and, in particular, the PEC of fluorescent small molecules (previously usually acting only as dye sensitizers for conventional semiconductors) is explored. After examining the PEC activities of some typical inorganic or organic fluorescent materials/molecules and by adopting methyl violet (MV) with the highest PEC activity among the examined fluorescent small molecules, a new and efficient (MV/Au nanoparticles (AuNPs))/fluorine-doped tin oxide (FTO) photoanode without conventional semiconductor(s) is prepared by layer-by-layer alternating the electrodeposition of AuNPs and the adsorption of MV. A bilirubin oxidase (BOD)/CuCoO/FTO bio-photocathode is prepared by electrodeposition, calcination and cast-coating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!