Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report results from a detailed analysis of the fundamental radical precursor diffusion processes on silicon surfaces and discuss their implications for the surface smoothness of hydrogenated amorphous silicon (a-Si:H) thin films. The analysis is based on a synergistic combination of first-principles density functional theory (DFT) calculations of SiH(3) radical migration on the hydrogen-terminated Si(001)-(2 x 1) surface with molecular-dynamics (MD) simulations of SiH(3) radical precursor migration on surfaces of a-Si:H films. Our DFT calculations yield activation energies for SiH(3) migration that range from 0.18 to 0.89 eV depending on the local electronic environment on the Si(001)-(2 x 1):H surface. In particular, when no substantial surface relaxation (Si-Si bond breaking or formation) accompanies the hopping of the SiH(3) radical the activation barriers are highest, whereas hopping between nearest-neighbor overcoordinated surface Si atoms results in the lowest radical diffusion barrier of 0.18 eV; this low barrier is consistent with the activation barrier for SiH(3) migration through overcoordinated sites on the a-Si:H surface. Specifically, the analysis of the MD simulations of SiH(3) radical migration on a-Si:H surfaces yields an effective diffusion barrier of 0.16 eV, allowing for the rapid migration of the SiH(3) radical prior to its incorporation in surface valleys; rapid migration and subsequent incorporation constitute the two-step mechanism responsible for the smoothness of plasma deposited a-Si:H thin films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2345064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!