On the mutual diffusion properties of ethanol-water mixtures.

J Chem Phys

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China.

Published: September 2006

The structural organization, the number of hydrogen bonds (H bond), and the self- and mutual diffusion coefficients of ethanol-water mixtures were studied by molecular dynamics simulation. It was found that both the numbers of H bonds per water and per ethanol decrease as the mole fraction of ethanol increases. The composition dependences and the relationships between the self- and the mutual diffusion coefficients were further discussed. The self-diffusion coefficient of water has a large drop as the concentration of ethanol increases from 0 to 0.3 and then it nearly keeps constant, while that of ethanol has a minimum around ethanol mole fraction of 0.5. The mutual diffusion coefficient could be divided into two parts, the kinematic factor and the thermodynamic factor. Both the kinematic and thermodynamic factors for ethanol-water mixtures were calculated. It was found that the change trend of mutual diffusion coefficients with the composition is mainly dependent on the thermodynamic factors.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2244547DOI Listing

Publication Analysis

Top Keywords

mutual diffusion
20
ethanol-water mixtures
12
diffusion coefficients
12
self- mutual
8
mole fraction
8
ethanol increases
8
thermodynamic factors
8
mutual
5
ethanol
5
diffusion properties
4

Similar Publications

Infrared (IR) photodetectors play a crucial role in modern technologies due to their ability to operate in various environmental conditions. This study developed high-performance InSe/GaAs interdiffusion heterostructure photodetectors with broadband response using liquid-phase method. It is believed that an InGaAs layer and InSe have been formed at the interface through the mutual diffusion of elements, resulting in a detection spectral range spanning from 0.

View Article and Find Full Text PDF

In the subauroral zone at the boundary of the auroral oval in the evening and night hours during geomagnetic disturbances, a narrow (about 1°-2°) and extended structure (several hours in longitude) is formed. It is known as a polarization jet (PJ) or the subauroral ion drift (SAID). The PJ/SAID is a fast westward ion drift and is one of the main signatures of a geomagnetic disturbance in the subauroral ionosphere at the altitudes of the F-layer, when the geomagnetic AE index reaches more than 500 nT.

View Article and Find Full Text PDF

Several studies explored the application of artificial intelligence (AI) in magnetic resonance imaging (MRI)-based rectal cancer (RC) staging, but a comprehensive evaluation remains lacking. This systematic review aims to review the performance of AI models in MRI-based RC staging. PubMed and Embase were searched from the inception of the database till October 2024 without any language and year restrictions.

View Article and Find Full Text PDF

Next-generation metabolic models informed by biomolecular simulations.

Curr Opin Biotechnol

January 2025

Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA. Electronic address:

Metabolic modeling is essential for understanding the mechanistic bases of cellular metabolism in various organisms, from microbes to humans, and the design of fitter microbial strains. Metabolic networks focus on the overall fluxes through biochemical reactions that implicitly rely on several biochemical processes, such as active or diffusive uptake (or export) of nutrients (or metabolites), enzymatic turnover of metabolites, and metal-cofactor enzyme interactions. Despite independent progress in biomolecular simulations, they have yet to be integrated to inform metabolic models.

View Article and Find Full Text PDF

The role of ubiquitin-mediated degradation mechanisms in the pathogenesis of diffuse large B cell (DLBCL) and follicular lymphoma (FL) is not completely understood. We show that conditional deletion of the E3 ubiquitin ligase Fbxo45 in germinal center B-cells results in B-cell lymphomagenesis in homozygous (100%) and heterozygous (48%) mice. Mechanistically, FBXO45 targets the RHO guanine exchange factor ARHGEF2/GEF-H1 for ubiquitin-mediated degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!