Water as a lubricant for graphite: a computer simulation study.

J Chem Phys

Angewandte Physikalische Chemie, Universität Heidelberg, INF 253, D-69120 Heidelberg, Germany.

Published: September 2006

The phase state and shear behavior of water confined between parallel graphite sheets are studied using the grand canonical Monte Carlo technique and TIP4P model for water. In describing the water-graphite interaction, two orientation-dependent potentials are tried. Both potentials are fitted to many-body polarizable model predictions for the binding energy and the equilibrium conformation of the water-graphite complex [K. Karapetian and K. D. Jordan in Water in Confining Geometries, edited by V. Buch and J. P. Devlin (Springer, Berlin, 2003), pp. 139-150]. Based on the simulation results, the property of water to serve as a lubricant between the rubbing surfaces of graphitic particles is associated, first, with the capillary condensation of water occurring in graphitic pores of monolayer width and, second, with the fact that the water monolayer compressed between graphite particles retains a liquidlike structure and offers only slight resistance to shear.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2352747DOI Listing

Publication Analysis

Top Keywords

water
7
water lubricant
4
lubricant graphite
4
graphite computer
4
computer simulation
4
simulation study
4
study phase
4
phase state
4
state shear
4
shear behavior
4

Similar Publications

Crop rotation effects on the population density of soybean soilborne pathogens under no-till cropping system.

Plant Dis

January 2025

USDA-ARS North Central Agricultural Research Laboratory, Brookings, South Dakota, United States;

Soilborne diseases are persistent problems in soybean production. Long-term crop rotation can contribute to soilborne disease management. However, the response of soilborne pathogens to crop rotation is inconsistent, and rotation efficacy is highly variable.

View Article and Find Full Text PDF

While recycling irrigation water can reduce water use constraints and costs in nurseries, adoption is hindered by the associated risk of recirculating and spreading waterborne pathogens. To enable regional water re-use, this study assessed oomycete re-circulation risks and recycled water treatment efficacy at organismal and community scales. In culture-based analysis of recycled pond water at two Mid-Atlantic nurseries across three years, diverse oomycetes (12+ species) were detected using culture-based analysis, with Phytopythium helicoides as the dominant species; MiSeq analysis detected eight of these species, plus 24 additional taxa.

View Article and Find Full Text PDF

Singularity of Lévy walks in the lifted Pomeau-Manneville map.

Chaos

January 2025

Centre for Complex Systems, School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.

Since groundbreaking works in the 1980s it is well-known that simple deterministic dynamical systems can display intermittent dynamics and weak chaos leading to anomalous diffusion. A paradigmatic example is the Pomeau-Manneville (PM) map which, suitably lifted onto the whole real line, was shown to generate superdiffusion that can be reproduced by stochastic Lévy walks (LWs). Here, we report that this matching only holds for parameter values of the PM map that are of Lebesgue measure zero in its two-dimensional parameter space.

View Article and Find Full Text PDF

Face masks are strongly believed to be the best precaution to reduce the transmission of the SARS-CoV-2 virus, which resulted in an unprecedented surge in the production and use of personal respiratory protective equipment. Unfortunately, this surge led to improper disposal of used masks. This study aimed to assess the occurrence of microplastics (MPs) in used and unused surgical and cloth masks and N95 respirators.

View Article and Find Full Text PDF

Bubble coalescence principle in saline water.

Proc Natl Acad Sci U S A

February 2025

School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China.

Bubbles present in saline water typically exhibit a prolonged lifetime, making them attractive for various engineering processes. Herein, we unveil a transition from delayed bubble coalescence to rapid bursting within about one millisecond in salty solutions. The key aspect in understanding this transition lies in the combined influences of surface deformation and ion surface excess instead of characterizing the ions alone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!