Nonadiabatic theory of molecular spectra of diatomic molecules is presented. It is shown that in the fully nonadiabatic framework, the rovibrational wave functions describing the nuclear motions in diatomic molecules can be obtained from a system of coupled differential equations. The rovibrational wave functions corresponding to various electronic states are coupled through the relativistic spin-orbit coupling interaction and through different radial and angular coupling terms, while the transition intensities can be written in terms of the ground state rovibrational wave function and bound rovibrational wave functions of all excited electronic states that are electric dipole connected with the ground state. This theory was applied in the nearly exact nonadiabatic calculations of energy levels, line positions, and intensities of the calcium dimer in the A (1)Sigma(u) (+)(1 (1)S+1 (1)D), c (3)Pi(u)(1 (3)P+1 (1)S), and a (3)Sigma(u) (+)(1 (3)P+1 (1)S) manifolds of states. The excited state potentials were computed using a combination of the linear response theory within the coupled-cluster singles and doubles framework for the core-core and core-valence electronic correlations and of the full configuration interaction for the valence-valence correlation, and corrected for the one-electron relativistic terms resulting from the first-order many-electron Breit theory. The electric transition dipole moment governing the A (1)Sigma(u) (+)<--X (1)Sigma(g) (+) transitions was obtained as the first residue of the frequency-dependent polarization propagator computed with the coupled-cluster method restricted to single and double excitations, while the spin-orbit and nonadiabatic coupling matrix elements were computed with the multireference configuration interaction wave functions restricted to single and double excitations. Our theoretical results explain semiquantitatively all the features of the observed Ca(2) spectrum in the A (1)Sigma(u) (+)(1 (1)S+1 (1)D), c (3)Pi(u)(1 (3)P+1 (1)S), and a (3)Sigma(u) (+)(1 (3)P+1 (1)S) manifolds of states.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2222348DOI Listing

Publication Analysis

Top Keywords

rovibrational wave
16
wave functions
12
calcium dimer
8
diatomic molecules
8
electronic states
8
ground state
8
theoretical spectroscopy
4
spectroscopy calcium
4
dimer 1sigmau+
4
1sigmau+ c3piu
4

Similar Publications

The rovibrational energy-level structures of BaH and BaD in their XΣ electronic ground state have been characterised by pulsed-field-ionisation zero-kinetic-energy photoelectron spectroscopy following resonance-enhanced (1 + 1') two-photon excitation from the BaH/BaD X Σ ground state the E Π (' = 0, 1) intermediate levels. A full set of rovibrational molecular constants for the BaH and BaD ground states has been derived for the first time and the adiabatic ionisation energies of BaH and BaD were determined to be 38 679.96(20) and 38 652.

View Article and Find Full Text PDF

A four-dimensional potential energy surface (4D-PES) has been constructed for the N2-OCS complex. The PES is achieved by applying the explicitly correlated coupled cluster method, which incorporates single, double, and perturbative triple excitations [CCSD(T)-F12a], along with the augmented correlation consistent triple zeta (aug-cc-pVTZ) basis set. The rovibrational levels are precisely determined and assigned through bound state calculations and wavefunction analysis.

View Article and Find Full Text PDF

The collisions between Na atoms and H molecules are of great significance in the field of chemical reaction dynamics, but the corresponding dynamics results of ground-state reactions have not been reported experimentally or theoretically. Herein, a global and high-precision potential energy surface (PES) of NaH (1') is constructed by the neural network model based on 21,873 high-level ab initio points. On the newly constructed PES, the quantum dynamics calculations on the Na(S) + H( = 0, = 0) → NaH + H reaction are carried out using the time-dependent wave packet method to study the microscopic reaction mechanism at the state-to-state level.

View Article and Find Full Text PDF

Relativistic Correction from the Four-Body Nonadiabatic Exponential Wave Function.

J Chem Theory Comput

October 2024

Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.

We present a method for calculating the relativistic correction in hydrogen molecules that significantly exceeds the accuracy of all the previous literature results. This method utilizes the explicitly correlated nonadiabatic exponential wave function, and thus treats electrons and nuclei equivalently. The proposed method can be applied to any rovibrational state, including highly excited ones.

View Article and Find Full Text PDF

Energy spectra with the Dirac equation of the q-deformed generalized Pöschl-Teller potential via the Feynman approach for .

J Mol Model

September 2024

Department of Physics, Faculty of Sciences, University M'hamed Bougara of Boumerdes, Route de la Gare Ferroviaire, Boumerdes, 35000, Boumerdes, Algeria.

Context: The diatomic molecules of potassium is widely used in industrial chemicals and alternative energy. Besides that, is very useful for researching molecular interactions and energy states, especially in the context of quantum chemistry and spectroscopy. In the present work, a newly proposed diatomic potential model within relativistic and non-relativistic quantum mechanics has been considered, to obtain corresponding energy eigenvalues and related normalized eigenfunctions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!